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Abstract
1.	 Camera trapping generates vast image datasets requiring classification before 

downstream ecological inference, yet the influence of classification errors on 
subsequent analyses is often overlooked. Classification performance can vary 
widely depending on the classification method (e.g. citizen science vs. artificial 
intelligence [AI]), species, illumination conditions (diurnal vs. nocturnal) and other 
contextual factors.

2.	 We compared a citizen science classification method to two AI classifiers 
(EfficientNet and DeepFaune) using an expert-labelled hold-out of 51,588 im-
ages across seven classes (‘empty’, ‘human’, ‘cervid’, ‘wild boar’, ‘red fox’, ‘leporid’ 
and ‘European badger’) captured day and night. For each class and method, we 
quantified precision (accuracy of positive predictions) and recall (ability to detect 
all positive instances), then fitted single-season occupancy models to the classi-
fied data and compared estimates against expert-derived benchmarks. Finally, we 
conducted a large-scale simulation to investigate how true occupancy, detection 
probability and classification performance (recall and precision) collectively influ-
ence the accuracy (root mean square error [RMSE]) of occupancy estimates.

3.	 Citizen scientists exhibited consistently high precision but more variable recall. 
The AI classifiers outperformed the citizen science method in recall for several 
species, including wild boar, leporid and European badger. Both approaches per-
formed worse on nocturnal images and showed reduced precision for night-time 
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1  |  INTRODUC TION

Tackling the ongoing biodiversity crisis requires accurate knowl-
edge of communities' ecological integrity, dynamics and population 
trends. Conservation efforts should focus on collecting current, 
reliable data that will inspire actions to improve ecosystem health. 
According to this framework, the concept of Essential Biodiversity 
Variables is gaining traction for rapidly diagnosing biodiversity 
changes (Kissling et al., 2018). However, they require cost-effective 
methods to characterise animal populations in large spatio-temporal 
studies, enabling well-informed global policies (Jetz et al., 2019).

Traditional wildlife surveying techniques, such as transect and 
point counts, live trapping and radio-tracking, have historically faced 
challenges due to logistical and economic constraints, as well as lim-
itations in scalability (Burghardt et al., 2012). While these methods 
have contributed valuable insights into wildlife ecology, technologi-
cal advancements in non-invasive remote-sensing methods, such as 
camera trapping, have revolutionised wildlife monitoring practices 
over the past decade (O'Connell et al., 2011). Camera traps are mostly 
motion-activated devices that automatically and remotely photo-
graph targets, typically wild animals. For that aim, they employ a 
passive infrared sensor to detect a difference in surface temperature 
between animals and their environment, which triggers the camera 
accordingly (Welbourne et  al.,  2016). Technological advancement 
and lower sales prices have favoured a generally increased use of 
these devices, which have become indispensable for studying spe-
cies abundance and distribution (Whytock et al., 2021) and animal 
behaviour (Burton et al., 2015; Caravaggi et al., 2017). Camera trap-
ping has seen significant improvements in photo quantity, memory 

capacity, battery life, camera size and the inclusion of video with 
audio capabilities (Glover-Kapfer et  al.,  2019; Meek et  al.,  2014), 
positioning it as a standard method in wildlife monitoring and re-
search and providing unparalleled opportunities for understanding 
wildlife populations and ecosystems. Recent advancements in cam-
era trapping and image classification technologies have improved 
the reliability and cost-effectiveness of ecological research, par-
ticularly for mammals (Delisle et  al., 2021). However, challenges 
remain in obtaining accurate data on ecological processes such as 
abundance, distribution and species interactions due to variations 
in species characteristics, camera models and settings (Hofmeester 
et al., 2019), as well as in the image classification process.

Despite the significant challenge in classifying camera trap im-
ages, novel citizen science platforms and machine learning tech-
niques are revolutionising wildlife studies by facilitating image 
classification and deriving ecological data (McClure et  al.,  2020; 
Swanson et al., 2016). Currently, there are three primary methods 
for extracting species data from camera trap images: (i) classifica-
tion by experts, that is, manually by the team of researchers carrying 
out the study, (ii) classification by volunteers in citizen science proj-
ects and (iii) automatic classification using artificial intelligence (AI). 
While experts may achieve the highest level of accuracy compared 
to citizen science and AI, the considerable amount of expert time re-
quired for image classification, as well as the associated costs, pres-
ents a notable impediment that can significantly delay the outputs 
and their contribution to conservation efforts (Gibbon et al., 2015; 
Green et  al.,  2020). Citizen science provides a substantially larger 
workforce than a standard-size team of researchers, allowing for the 
parallelised and efficient classification of many images. Although the 

‘empty’ images. Bias in occupancy estimates differed across species, methods and 
space—the AI-based estimates were generally more biased, with both the mag-
nitude and direction of bias varying spatially, especially for rarer species such as 
leporids. In our simulation study, precision emerged as the strongest predictor of 
occupancy model accuracy, with lower precision substantially increasing RMSE. 
Lower occupancy rates increased RMSE, and precision regulated the impact of 
detection probability: at low precision, higher detection probability worsened 
errors; at high precision, RMSE remained low—or even decreased—as detection 
probability rose.

4.	 Although AI classifiers offer unmatched processing speed, our findings show that 
citizen science can reduce classification errors. Moreover, low precision and poor 
recall, especially for rare or nocturnal species, can substantially bias occupancy 
models. Based on our results, we recommend improving precision and accounting 
for classification quality and uncertainty to ensure robust inference from camera 
trap data.

K E Y W O R D S
artificial intelligence, camera trap, citizen science, computer vision, convolutional neuronal 
networks, deep learning, image classification, wildlife monitoring
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growing number of citizen science projects indicates their relevance 
for mammal monitoring (Swanson et al., 2016; Townsend et al., 2021), 
concerns persist about the time-consuming nature of training and 
maintaining these projects for accurate image classification. A re-
cent study found that citizen science labelling accuracy differed 
among species, with more common and visually striking species (gi-
raffe Giraffa camelopardalis, porcupine Hystrix africaeaustralis, male 
lion Panthera leo and waterbuck Kobus ellipsiprymnus) achieving bet-
ter results than rare species (Swanson et al., 2016). However, well-
designed protocols for citizen science training and data extraction 
have been shown to reduce classification error and, for certain spe-
cies, produce labels of comparable quality to those of experts (Bird 
et al., 2014). Finally, the increasing use of AI in the last few years 
has significantly enhanced the efficiency of classifying camera trap 
images. However, perspectives on the use of machine learning for 
ecological inference vary. For instance, Whytock et al.  (2021) sug-
gested that AI classifications could often be directly used for eco-
logical inference, bypassing manual validation. Conversely, others 
have highlighted that species-level misclassifications can lead to in-
correct occupancy estimates (Lonsinger et al., 2024), stressing the 
importance of accounting for classification uncertainty (Cowans 
et al., 2024).

Our study aim is to evaluate the variability in classification per-
formance among different methods: citizen science (CS-Zoo), hosted 
on Zooniverse (an open online platform for crowdsourced citizen 
science), an image-oriented Convolutional Neural Network (CNN) 
trained by us (EfficientNet-B5), which classifies the entire image, and 
an object-oriented CNN (DeepFaune, Rigoudy et  al.,  2023), which 
detects individual objects within the image and classifies them. 
We evaluated these methods across seven image classes, including 
‘empty’, ‘human’ and mammal taxa (species and families), under var-
ious lighting conditions using a dataset of 51,588 images captured 
by 35 camera traps in Doñana National Park (SW Spain). Then, using 
single-season occupancy analyses (Mackenzie et al., 2002), we com-
pared the occupancy predictions for the five animal classes derived 
from each classification method with those obtained from expert-
labelled data.

2  |  MATERIAL S AND METHODS

All analyses were conducted in R version 4.4.1 (R Core Team, 2024) 
within a fully reproducible renv (Ushey & Wickham, 2025) environ-
ment. The Supporting Information provides complete scripts, data 
and outputs to reproduce every result in the manuscript, plus tuto-
rial vignettes demonstrating how to: (1) evaluate classifier perfor-
mance (recall, precision, etc.) against a known-truth subset and (2) 
simulate combinations of occupancy, detection, recall and precision 
to assess their effects on occupancy analyses. Tutorials use toy 
datasets for quick demonstrations, while appendix scripts include 
full analyses—some computationally intensive—with pre-generated 
outputs so results are immediately accessible without rerunning 
lengthy workflows.

Camera trap fieldwork was conducted under annual permits 
issued by the regional environmental authority of the Junta de 
Andalucía (permit numbers 202099900394570, 202199900279740, 
2022107300000122 and 2023107300001409). This study did not 
involve human participants or personal data; therefore, approval 
from a human-research ethics committee was not required. Ethical 
approval was not required for this study, as it involved only non-
invasive camera trapping and no handling or capture of animals.

2.1  |  Study area and image collection

We obtained camera trap images from an ongoing wildlife monitor-
ing project in the Doñana National Park, a UNESCO World Heritage 
Site in southwestern Spain. The Park's diverse ecosystems, ranging 
from marshlands and Mediterranean forests to coastal dunes, sup-
port a diverse mammal community. Currently, the medium and large 
mammal community in Doñana comprises three species of wild un-
gulates (red deer, Cervus elaphus; fallow deer, Dama dama; and ‘wild 
boar’, Sus scrofa), five species of carnivores (Iberian lynx, Lynx pardi-
nus; ‘red fox’, Vulpes vulpes; European badger, Meles meles; Egyptian 
mongoose, Herpestes ichneumon; and genet, Genetta genetta), and 
two species of lagomorphs (Iberian hare, Lepus granatensis; and 
European rabbit, Oryctolagus cuniculus). Additionally, domestic un-
gulates such as cattle and horses are present in the area. The Iberian 
lynx, an endemic and endangered feline species, specialises in prey-
ing on European rabbits, a keystone species that has experienced 
significant population declines due to disease outbreaks. Thirty-five 
camera traps were randomly distributed in the study area (Figure 1), 
starting from October 2020. These traps were installed on wooden 
poles positioned 50 cm above the ground and spaced at least 1 km 
apart.

We set up the cameras to take three consecutive photos, with a 
1-s delay between bursts. We checked the camera statuses and re-
placed the memory cards periodically, approximately every month. 
We used no-glow (black or invisible) flash cameras, specifically the 
Browning Dark OPS HD PRO X and Browning Dark OPS PRO DCL 
models. These cameras emit wavelengths below 940 nm, making 
them invisible to humans and mammals. However, their nocturnal 
images are black-and-white and may have lower quality than those 
captured with white flashes.

2.2  |  Image classification through citizen science

We obtained image classifications through a Zooniverse CS project 
(CS-Zoo) that we launched. Zooniverse is the world's most popular 
online platform for citizen science, with over one million volunteers 
supporting research projects across various topics. This platform 
allows researchers to create a personalised website where volun-
teers receive information and tools to help classify subjects of dif-
ferent natures. In recent years, the number of camera trap projects 
hosted at Zooniverse has increased significantly, outpacing the 
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growth of registered volunteers (Swanson et al., 2016; Townsend 
et al., 2021). Our citizen science project has enlisted about 18,000 
volunteers, who, from April 2021 to January 2024, have collec-
tively classified approximately 1,100,000 images. Volunteers were 
given extensive didactic material, which included photographs ac-
companied by explanatory text, to help them distinguish various 
species and identify them within the photos.

After each monthly field inspection of the camera traps, we sent 
a random selection of images, with a maximum of five per event 
(defined as consecutive photos from the same camera trap loca-
tion within 90 s), to the Zooniverse project, ensuring coverage of 
all camera traps. Volunteers classified each image individually with-
out viewing the sequences. Their task was to label each image with 
the correct species class among possible options (see below and 
Figure 2a). The interface provided a reference image and a warning 
about potential classes that could be easily confused to aid their 
decision-making (Figure 2b). Finally, volunteers were also requested 
to indicate the number of individuals observed in each image.

Volunteers were tasked with selecting from a range of 18 dis-
tinct classes to classify each image. This set encompassed 12 mam-
mal species: the Iberian lynx, common genet, mongoose, ‘red fox’, 
‘European badger’, red deer, fallow deer, ‘wild boar’, European rab-
bit, Iberian hare, cow and horse. Additionally, two mammal families, 
Cervidae (including red and fallow deer, ‘cervid’ class hereon) and 
Leporidae (including rabbits and hares, ‘leporid’ class hereon), were 
included in the set. These last two classes were added because, in 
some circumstances (low light, animals in motion or far away from 
the camera), it is very difficult or almost impossible to distinguish 
between the red deer and the fallow deer or the Iberian hare and 
the European rabbit. Still, it is possible to determine the family, 
that is, whether the photographed animal is a ‘cervid’ or a ‘leporid’. 
In other circumstances where it was not feasible to identify the an-
imal captured in the image, volunteers were allowed to classify the 
image as ‘unrecognisable’. Finally, three additional classes, namely 
‘empty’, ‘other species’ and ‘human’, were also included in the clas-
sification options. Labellers were instructed to classify instances 

F I G U R E  1  Map of the study area, the Doñana National Park in southwestern Spain, highlighting camera trap (red points) placements 
within the non-flooded zone (solid area). The dashed area represents the flooded zone.
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    |  5SANTORO et al.

of humans or vehicles as a single class. Consequently, throughout 
the article, the class ‘human’ encompassed humans and vehicles.

We established specific criteria for removing images from the 
set available for volunteer classification at Zooniverse. An image was 
retired from volunteers' classification and considered as classified 
if it met any of the following conditions: (i) two or more volunteers 
identified it as ‘human’, (ii) three or more volunteers classified it as 
‘empty’ or (iii) five or more volunteers reached a consensus on the 
same classification. Additionally, once an image received 15 classifi-
cations, it was retired from the platform. If a majority class emerged 
among these 15 classifications, the image was stored with that clas-
sification. If no majority emerged, the image was assigned as NA (not 
classified by citizen science).

2.3  |  Image classification through AI

A CNN classification model was developed with the EfficientNet-B5 
(EfficientNet hereon), an architecture designed to optimise model 
performance and computational resources (Tan & Le,  2019). The 
network was built and trained to classify 12 mammal species, four 
taxonomic groups (cervid, leporid, small mammal, bird), ‘empty’ and 
‘human’ classes. However, unlike Zooniverse, the network lacked the 
‘unrecognisable’ class. During the training phase, a dataset compris-
ing 390,208 training images and 7200 validation images (about 70% 
from our study area but different from the set used for performance 
evaluation) was utilised, with the latter evenly distributed across 
all classes, containing 400 samples per category. We employed 
transfer learning techniques by initialising the model's weights with 
pre-trained weights from the ImageNet dataset. This approach facili-
tated the model's learning process and convergence during training 
(Russakovsky et al., 2015; Torrey & Shavlik, 2010). Furthermore, we 
applied data augmentation techniques to expand the dataset and en-
hance the model's robustness against input data variations. With im-
ages standardised to a resolution of 480 × 640 pixels, augmentation 

strategies such as rotation, flipping and scaling were systematically 
employed to diversify the dataset and imbue the model with greater 
resilience to real-world scenarios (Shorten & Khoshgoftaar,  2019). 
To mitigate class imbalances and promote equitable representation 
across all categories, at each epoch of the training phase, 1160 im-
ages per class were randomly sampled with replacement, aligning 
with the size of the minority class (dog class). This approach ensured 
that each class contributed equivalently to the model's learning pro-
cess, thereby minimising the risk of bias and maximising classifica-
tion accuracy, particularly for underrepresented categories.

A second AI classification was obtained using DeepFaune v1.2 
(https://​www.​deepf​aune.​cnrs.​fr). DeepFaune employs YOLOv8s, a 
high-performance, medium-sized detection model trained using crop-
ping data from MegaDetector V6 (Beery et al., 2018). DeepFaune's 
alternative detector utilises the regions defined by the detection 
of each animal to provide classification within those regions rather 
than classifying the entire image. It identifies empty images, as well 
as people, vehicles and 28 mammal species or higher taxonomic 
groups trained in the CNN classifier. In contrast, EfficientNet does 
not perform image cropping. We specifically tailored the selection 
of mammal species to be recognised by DeepFaune to match those 
existing in our study area. DeepFaune users are required to set a 
confidence threshold. We set this threshold to the minimum allowed 
value (0.25), which closely matched the minimum confidence score 
of our EfficientNet model (0.23).

2.4  |  Classification performance dataset

The original dataset comprised 55,059 images captured between 
September 2021 and January 2022. These images constituted a 
comprehensive sample from our citizen science project, representing 
a random selection from the entire pool of images collected during 
the study period. None of these images was employed to train the 
AI classification systems. Ground-truth labels for these images were 

F I G U R E  2  Citizen science project interface for image classification. (a) Volunteers were first asked to recognise one among the 18 
possible classes: 12 mammal species, two mammal families (Cervidae and Leporidae), human or vehicle, unrecognisable, other species and no 
animal (i.e. ‘empty’). (b) Next, if a mammal class was selected, they were asked to indicate how many individuals they saw.
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reviewed by three mammalogists involved in this study. In cases of 
uncertainty, experts reviewed the entire photo sequence, benefiting 
from a level of scrutiny not available to the CS-Zoo and AI classifica-
tion systems. Additionally, instances initially labelled as ‘empty’ by 
experts but later identified differently by MegaDetector V.5 were 
re-evaluated by experts (n = 1357 images). This re-evaluation led to 
changes in classification in 370 cases in the expert dataset out of 
the 55,059 images. Seven classes were selected based on expert 
classification, each comprising a minimum of 100 instances: ‘empty’, 
‘human’ and five species or families—‘cervid’, ‘wild boar’, ‘red fox’, 
‘leporid’ and ‘European badger’. The final expert-labelled data-
set was unevenly distributed: ‘empty’ = 30,948, ‘cervid’ = 13,073, 
‘wild boar’ = 1171, ‘red fox’ = 998, ‘leporid’ = 439 and ‘European 
badger’ = 129. This study dataset differed from the original dataset 
as it excluded images belonging to any other species from the origi-
nal 18 distinct classes, focusing solely on the seven specified classes 
for the case study.

2.5  |  Evaluation of the classification systems 
performance

In machine learning, four terms are commonly used to assess image 
classifications: true positive, true negative, false negative and false 
positive. True positives correctly identify the presence of the class, 
true negatives correctly identify the absence of the class, false posi-
tives incorrectly identify the presence of the class when it is not 
actually present and false negatives incorrectly fail to identify the 
presence of the class. Additional concepts, like recall and precision, 
are fundamental in this context. Recall (also known as sensitivity) 
measures the proportion of actual positive instances correctly iden-
tified by the classifier. It answers the question: ‘Of all the photos 
of a given class, what proportion were correctly identified by the 
classifier?’. Precision measures the proportion of positive instances 
identified by the classifier that were actually correct. It answers the 
question: ‘Of all the photos identified as a given class, what propor-
tion actually belonged to that class?’. Maximising both recall and 
precision for all the classes is crucial for monitoring studies and 
evidence-based conservation. For example, high recall ensures most 
instances of a given threatened species are detected, while precision 
confirms accurate species identification.

We used expert classifications as the ground truth to compare 
the performance of three classifiers—CS-Zoo and two AI models 
(EfficientNet and DeepFaune)—in identifying seven classes: ‘empty’, 
‘human’, ‘cervid’, ‘wild boar’, ‘red fox’, ‘leporid’ and ‘European bad-
ger’. We employed three performance metrics: recall, precision and 
Matthew's correlation coefficient (Chicco & Jurman, 2022). Matthew's 
correlation coefficient provides a single score that evaluates how well 
the predicted classifications match the actual classes in the photos, 
even when there is an imbalance among the classes.

First, we evaluated the classifiers' performance for each class, 
irrespective of light conditions (diurnal or nocturnal). Next, we inves-
tigated the impact of light conditions on classification accuracy. We 

categorised each photo as ‘day’ or ‘night’ based on its timestamp rel-
ative to the official sunrise and sunset times for the study area, cross-
referencing data from the National Institute of Geography (https://​
www.​ign.​es). Photos captured under ambiguous lighting conditions 
(dawn and dusk) were excluded from the subsequent analysis. We 
employed resampling techniques (n = 1000) with replacement (Efron 
& Tibshirani, 1991) to calculate 95% credible intervals for each met-
ric and class.

2.6  |  Statistical analyses

2.6.1  |  Differences in classification performance

We evaluated performance differences between classifiers, classes 
and light conditions. To achieve this, we utilised the glmmTMB func-
tion (Brooks et al., 2017) from the homonymous package to run gen-
eralized linear models, regressing recall and precision onto classifier 
(CS-Zoo, EfficientNet, DeepFaune), class (‘empty’, ‘human’, ‘cervid’, 
‘wild boar’, ‘red fox’, ‘leporid’ and ‘European badger’) and light condi-
tions (day or night). We used a beta distribution for the response 
variables and checked model fit using the simulateResiduals function 
from the DHARMa package (Hartig,  2021). To assess interactions 
and isolate individual contributions, we ran three GLMs for recall 
and precision, testing pairwise interactions (e.g. classifier × light) 
while treating the third predictor (e.g. class) additively. Post-hoc 
pairwise comparisons were conducted using the emmeans function 
(Lenth, 2022), with Tukey's p-value adjustment for multiple compari-
sons. As the model follows a beta-binomial distribution, compari-
sons were made on the log odds ratio scale.

2.6.2  |  Single-season occupancy

For the data obtained from each classifier and animal class dur-
ing the initial 30 days of the study period, we applied single-season 
occupancy models (Mackenzie et  al.,  2002) using the occu func-
tion from the unmarked package (Fiske & Chandler, 2011; Kellner 
et al., 2023). Single-season occupancy models include two param-
eters: (1) occupancy (ψ), which represents the probability that the 
target species used a camera trap station during the season and 
(2) detection probability (p), which denotes the probability of de-
tecting the target species during a survey if the species was pre-
sent at the station. To ensure uniform model selection criteria and 
avoid biases stemming from class-specific candidate model sets, 
we evaluated a consistent set of 44 candidate models across 16 
combinations of classifiers (ground truth, CS-Zoo, EfficientNet and 
Deepfaune) and animal taxon (‘cervid’, ‘wild boar’, ‘red fox’, ‘leporid’ 
and ‘European badger’). The most parameterised global model in-
cluded the non-additive effects of latitude and longitude for both 
occupancy and detection parameters, and the effect of survey 
periods (three groups of 10 consecutive days) on detection. We 
excluded candidate models if they exhibited convergence issues 
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during likelihood maximisation, non-estimable standard errors or 
a Hessian condition number exceeding 104. Next, we assessed the 
models' goodness of fit (using the parboot function). We used the 
smallest estimate of c-hat as the reference for each set of candidate 
models (Burnham & Anderson, 2002). We found no overdispersion 
issues, as the c-hat estimates of each set of candidate models were 
equal to 1 after rounding to the second decimal place. We then 
used the modSel function to create AIC tables (the default criterion 
in unmarked). We predicted the occupancy estimates in the study 
area by model-averaging over these models (using the fitList and 
predict functions).

2.6.3  |  Simulation study: Effect of classification 
errors on occupancy estimates

We simulated occupancy data on a 100 × 100 grid (10,000 cells) 
under nine combinations of true occupancy (ψ = 0.2, 0.5, 0.8) and 
cumulative detection probability (p = 0.2, 0.5, 0.8)—where ‘cumula-
tive p’ is the chance of detecting a species at least once over the five 
occasions of a survey. Two standardised spatial covariates (one each 
for occupancy—covPsi—and per-occasion detection—covP) were 
generated by summing 10 random Gaussian peaks to create a het-
erogeneous landscape of ψ and p values.

For each (ψ, p) pair, 100 bootstrap iterations were performed. 
In each iteration, 200 sites were sampled roughly evenly across 
the grid; true occupancy was drawn as logit−1[logit(ψ) + covPsi], and 
conditional on presence, a five-occasion detection history was 
generated with per-occasion probability logit−1[logit(p) + covP]. A 
single-season occupancy model was then fitted using unmarked 
(occu(~covP ~ covPsi); Fiske & Chandler, 2011; Kellner et al., 2023), 
and ψ was predicted for all grid cells, averaging across iterations to 
obtain a baseline surface.

Next, we iterated over recall and precision values ranging from 
0.50 to 1.00 in increments of 0.01, where, for example, a recall of 
0.50 means that only half of the true detections are retained (i.e. 
50% of false negatives) and a precision of 0.5 that only half of the 
detections are true (i.e. 50% of false positives). For each recall and 
precision pair, we injected classification errors into the original de-
tection history by randomly flipping non-detections to detections to 
generate false positives and flipping detections to non-detections to 
generate false negatives in proportions that achieve the target recall 
and precision. We then refitted the same occupancy model to these 
perturbed data. We averaged the predicted ψ over 100 iterations to 
obtain estimates of ψ when recall and/or precision were below one. 
When recall equals 1 and precision equals 1 (no misclassification), we 
reused the baseline ψ. From each scenario (ψ, p, recall, precision), we 
calculated the RMSE of predicted ψ against the true ψ surface. After 
standardising the true ψ, p, recall and precision (mean = 0, SD = 1), we 
fitted a Gamma-family GLM (log link) predicting RMSE as a function 
of all four standardised covariates and their two-way interactions. 
Model fit was assessed via DHARMa (Hartig, 2021), and effect esti-
mates (95% CI) were extracted with effects (Fox & Weisberg, 2019).

3  |  RESULTS

When the study dataset was created, our citizen science project 
in the Zooniverse platform had been active for approximately 
443 days, classifying about 677,000 images, indicating an average 
classification rate of 1528 daily. The EfficientNet model ran on a 
computer with an Intel(R) Core(TM) i7-5820K CPU @ 3.30GHz and 
an NVIDIA GeForce GTX 1080 graphics card, processed 9 photos 
per second or 777,600 per day (>500 times faster than CS-Zoo). To 
process the same number of images as Zooniverse in 443 days, our 
AI model would require approximately 21 h. The confusion matrices 
of the three classifiers and a detailed output of statistical analyses 
can be found in Appendix S1.

Performance metrics varied notably across classes and classifi-
cation systems (Figure 3). While the AI models consistently achieved 
higher recall values for four of the five animal taxa during night-time, 
CS-Zoo demonstrated superior precision across all combinations of 
classes and light conditions.

3.1  |  Differences in recall

For the pooled dataset, EfficientNet detected fewer instances 
of the ‘empty’ class than both CS-Zoo (all values reported on the 
log odds ratio scale: −1.340 ± 0.485, p = 0.016) and DeepFaune 
(−1.372 ± 0.489, p = 0.014). For the ‘European badger’, both 
EfficientNet (2.597 ± 0.515, p < 0.001) and DeepFaune (2.353 ± 0.472, 
p < 0.001) outperformed CS-Zoo. EfficientNet also had higher recall 
for the ‘leporid’ class compared to CS-Zoo (1.199 ± 0.270, p < 0.001) 
and DeepFaune (0.867 ± 0.274, p = 0.004). However, DeepFaune 
showed significantly higher recall for ‘red fox’ than both EfficientNet 
(0.626 ± 0.242, p = 0.026) and CS-Zoo (0.608 ± 0.241, p = 0.031).

Recall differed between day and night only for CS-Zoo, which 
showed a significant decrease at night (−1.201 ± 0.297, p < 0.001). 
DeepFaune showed a marginal decrease (−0.548 ± 0.313, p = 0.080), 
while EfficientNet showed no significant difference between day and 
night. By class, recall for the ‘empty’ class significantly decreased at 
night (−2.095 ± 0.613, p < 0.001), and ‘red fox’ also showed a smaller 
but significant decrease (−0.803 ± 0.311, p = 0.010). Other species 
showed no significant variation, and recall estimates for ‘European 
badger’, ‘human’ and ‘leporid’ could not be estimated due to insuffi-
cient data.

3.2  |  Differences in precision

For the pooled dataset, we found no differences between 
EfficientNet and DeepFaune. In most cases, CS-Zoo was more 
precise than DeepFaune (all values reported on the log odds 
ratio scale: ‘European badger’: 3.359 ± 1.030, p = 0.003; ‘human’: 
3.388 ± 1.030, p = 0.003; ‘leporid’: 3.292 ± 1.030, p = 0.004; ‘red 
fox’: 1.872 ± 0.749, p = 0.033) and EfficientNet (‘European badger’: 
2.966 ± 1.050, p = 0.013; ‘human’: 2.514 ± 1.080, p = 0.051; ‘leporid’: 
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8  |    SANTORO et al.

2.720 ± 1.060, p = 0.028; ‘red fox’: 1.997 ± 0.746, p = 0.020; ‘wild 
boar’: 2.321 ± 0.783, p = 0.009).

The overall precision of EfficientNet and DeepFaune de-
clined from day to night (EfficientNet: −0.998 ± 0.493, p = 0.043; 
DeepFaune: −0.976 ± 0.435, p = 0.025), primarily driven by a sharp 
decrease in the ‘empty’ class (−2.307 ± 0.429, p < 0.0001). In con-
trast, CS-Zoo showed no significant differences.

3.3  |  Occupancy analyses

For ‘cervid’, all methods produced occupancy estimates similar to 
expert labelling, with occupancy being high and uniform across 
the study area (Figure 4). CS-Zoo also performed well for ‘leporid’ 
and ‘European badger’, with only minor overestimation in high-
occupancy areas. EfficientNet and DeepFaune overestimated 
‘wild boar’ occupancy in low-occupancy areas and underestimated 
it in high-occupancy areas, a pattern also observed for ‘red fox’. 
For ‘European badger’, EfficientNet showed the strongest bias, 

underestimating occupancy in areas with higher occupancy values 
and overestimating it in areas with lower occupancy, a trend also 
observed in DeepFaune but to a lesser extent. For ‘leporid’, which 
had low true occupancy throughout the area, EfficientNet and 
especially DeepFaune overestimated occupancy, while CS-Zoo 
showed a milder bias similar to that seen for ‘red fox’ (Table 1).

3.4  |  Effect of classification errors on occupancy 
model accuracy

We found that classification precision was by far the strongest 
driver of occupancy model accuracy: a 1 SD increase in precision 
reduced RMSE by 0.621 SD (p < 0.001; Figure 5a). True occupancy 
also had a significant but more moderate effect (−0.129 SD per SD 
increase in ψ; p < 0.001; Figure 5b), with higher ψ leading to lower 
error. Detection probability showed a slight negative main ef-
fect (−0.013 SD; p < 0.001) and recall a modest reduction in RMSE 
(−0.027 SD; p < 0.001).

F I G U R E  3  Variation in recall, precision and Matthew's correlation coefficient (MCC) metrics across different classes and classification 
systems (CS-Zoo, EfficientNet, DeepFaune) showed both pooled and separated between day and night. No metrics for nocturnal human and 
diurnal ‘leporid’ and ‘European badger’ are reported due to limited detection instances (<1%). Recall varied considerably among classes and 
classifiers. However, the AI models consistently achieved higher values for four out of the five animal taxa during night-time in recall, while 
CS-Zoo exhibited superior precision across all combinations of classes and light conditions. Nocturnal photos demonstrate lower overall 
performance (MCC), primarily due to decreased precision, particularly notable for the ‘empty’ class.

F I G U R E  4  Comparative analysis of model-averaged predictions for occupancy probabilities estimated by CS-Zoo, EfficientNet and 
DeepFaune compared to expert-labelled data for ‘cervid’, ‘wild boar’, ‘red fox’, ‘European badger’ and ‘leporid’. The first column represents 
the occupancy model-averaged predictions by expert labelling, while the subsequent columns show deviations of predictions by CS-Zoo, 
EfficientNet and DeepFaune. The scales represent occupancy probability (p: 0.00 to 1.00) and deviations (−1 to +1).
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10  |    SANTORO et al.

Among interactions, only ψ × precision was non-significant 
(p = 0.547). In contrast, the precision × p interaction revealed that at 
low precision, increasing detection probability raises RMSE, whereas 
at high precision, RMSE stays low or even declines slightly as p in-
creases (p < 0.001; Figure 5c). Other two-way interactions were sta-
tistically significant, but their effect sizes were more negligible (see 
Supporting Information for full model output).

4  |  DISCUSSION

Evaluating classification performance in camera trap studies is 
challenging due to variability among classifiers, species, lighting 
conditions and other factors. Our citizen science project excelled in 
precision; however, all classifiers experienced reduced performance 
in nocturnal images, particularly for the ‘empty’ class, raising 

TA B L E  1  Comparative analysis of model selection and model-averaged predictions for animal taxa and classification systems. Rows 
in bold represent the reference method (expert classification). The ‘Occupancy formula’ and ‘Detection formula’ columns represent the 
corresponding parameters' formulas selected from the lowest AIC model in the respective sets of candidate models for each classifier and 
class. The 95% credible interval (CI) estimates correspond to the median and 0.025 and 0.975 percentiles of the model-averaged predictions 
over the study area.

Species Classifier Occupancy formula Detection formula 95% CI estimate

cervid Expert constant constant 0.98 (0.916, 0.984)

CS-Zoo constant constant 0.999 (0.999, 1)

EfficientNet constant constant 0.98 (0.916, 0.984)

DeepFaune constant constant 0.98 (0.916, 0.984)

wild boar Expert lon + lat lon + lat + lon:lat 0.9 (0.465, 0.936)

CS-Zoo lon + lat lon + lat + lon:lat 0.901 (0.482, 0.938)

EfficientNet lon + lat lon + lat + lon:lat 0.831 (0.545, 0.918)

DeepFaune constant lon + lat 0.828 (0.755, 0.881)

red fox Expert lon + lat + lon:lat lon 0.9 (0.465, 0.936)

CS-Zoo lon lat 0.901 (0.482, 0.938)

EfficientNet lon + lat + lon:lat lon + lat + lon:lat 0.831 (0.545, 0.918)

DeepFaune lon lon 0.828 (0.755, 0.881)

leporid Expert lon constant 0.237 (0.132, 0.475)

CS-Zoo lon lon 0.173 (0.112, 0.562)

EfficientNet lon + lat + lon:lat constant 0.548 (0.351, 0.75)

DeepFaune lon + lat + lon:lat constant 0.761 (0.346, 0.901)

badger Expert lon lon + lat + lon:lat 0.762 (0.4, 0.806)

CS-Zoo lon lon + lat + lon:lat 0.825 (0.363, 0.829)

EfficientNet lon + lat lon + lat + lon:lat 0.54 (0.167, 0.771)

DeepFaune constant lon + lat + lon:lat 0.686 (0.657, 0.729)

F I G U R E  5  Simulation-derived partial effects of precision, true occupancy and detection probability on occupancy model accuracy (root 
mean square error [RMSE]), with predictions plotted on the response scale. These plots highlight the three strongest influences on RMSE: 
(a) higher precision drives down RMSE most steeply, (b) higher true occupancy also reduces RMSE, but to a lesser extent and (c) precision 
moderates the effect of detection probability—at low precision, RMSE rises with p, while at high precision RMSE remains low or declines.
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concerns about the potential for missed detections of nocturnal 
species. Estimates from single-season occupancy models, which 
do not account for false positives, were accurate for uniformly 
distributed species using both AI and citizen science. However, they 
were significantly biased for rarer or more heterogeneous species, 
particularly with AI, due to lower precision. Simulations showed that, 
when classification precision is low, higher detection probability 
paradoxically increases occupancy model error by spreading false 
positives across a larger share of the study area. Collectively, these 
findings underscore the need to enhance classification precision 
and explicitly incorporate classification uncertainty into ecological 
models to ensure the reliability of automated camera trap monitoring.

Our findings revealed high classification precision in our citizen 
science project, consistent with the common practice of bench-
marking AI model accuracy against citizen science projects, often 
considered the gold standard (Norouzzadeh et  al.,  2018; Sullivan 
et al., 2018; Swanson et al., 2016; Willi et al., 2019). However, we 
observed notable disparities in the performance of classification 
systems across various target classes. While all systems accurately 
identified common classes like ‘human’, ‘cervid’ and ‘wild boar’, they 
struggled with less common ones such as ‘red fox’, ‘leporid’ and 
‘European badger’, a similar outcome to those reported in previous 
research. For instance, Swanson et al. (2016) achieved accurate clas-
sifications only for common species in a large-scale citizen science 
camera trap study in the Serengeti National Park. Vélez et al. (2022) 
noted that AI platforms like Wildlife Insights excel in accuracy for 
common species but have lower recall for less common ones, high-
lighting the difficulty of applying a single AI model across diverse 
ecosystems and taxa. Beery et al. (2018), Norouzzadeh et al. (2021) 
and Norman et al. (2023) demonstrated that AI using object detec-
tion with cropped regions around animals can reduce overfitting 
to specific camera locations, improving generalisability. Our study 
compared DeepFaune, employing object detection with cropped 
regions, to EfficientNet, which was trained on whole-image labels 
largely from our study area. While no significant performance dif-
ferences were found, the two models differ in their transferabil-
ity. DeepFaune, trained on cropped regions and a broader dataset, 
demonstrates better adaptability across diverse ecosystems. In con-
trast, EfficientNet, trained on whole images specific to the study 
area, is more influenced by habitat and background features, making 
it less transferable to new environments without retraining on local 
data.

Photos' light condition was another critical aspect influencing 
classification performance. Our study highlights a decline in the abil-
ity of classification systems to accurately identify the ‘empty’ class 
in night images, indicating potential underdetection of nocturnally 
active species. Accordingly, we observed a significant decline in 
classification performance across all systems for night-time photos, 
which was particularly evident for nocturnal species like ‘leporid’, 
‘European badger’ and fast-moving species like ‘red fox’. This decline 
deserves attention as nocturnality is widespread among mammals 
and many species are becoming more nocturnal to avoid human 
disturbance (Gaynor et  al.,  2018). Besides hindering movement 

detection (Hofmeester et  al.,  2019), lower identification accuracy 
in nocturnal images is likely due to lower image quality from in-
frared flashes. Notably, although no-glow flashes are invisible to 
humans, some animals can detect them and alter their behaviour 
(Meek et al., 2016), potentially affecting detection rates. Rowcliffe 
et al.  (2014) noted a 21% increase in camera trap detection radius 
during the day, affecting motion detection and, subsequently, diel 
activity and estimation of demographic parameters based on it. 
Cusack et  al.  (2015) observed that random encounter models ap-
plied to daytime observations of lions, where movement is less ran-
dom, may yield biased density estimates. These movement detection 
and species identification challenges can distort our understanding 
of species' activity patterns and generate indirect implications for 
estimating ecological parameters.

Misclassification at the species level introduces false negatives 
for the misclassified species and false positives for the species that 
are wrongly attributed, potentially biasing occupancy estimates if 
not addressed. In our single-season analyses, all methods matched 
reference occupancy for the common ‘cervid’; however, AI overes-
timated occupancy in low-occupancy cells and underestimated it in 
high-occupancy cells for ‘wild boar’ and ‘red fox’. ‘European badger’ 
showed a similar pattern, and both AI models greatly overestimated 
occupancy for the consistently rare ‘leporid’, whereas CS-Zoo dis-
played only mild bias. Simulations clarify these patterns: when pre-
cision is low, raising detection probability increases the absolute 
number of false positives, seeding unoccupied sites and inflating oc-
cupancy estimates, while false negatives are partly buffered within 
sampling intervals spanning multiple days because later true detec-
tions can offset earlier misses; a single false-positive frame, however, 
irreversibly tags the entire occasion as a detection, thereby helping 
make precision—not recall—the dominant driver of bias. Although 
our simulations report a mean error across the landscape, the mag-
nitude and even direction of bias vary sharply among cells (Figure 4; 
Supporting Information heat maps), mirroring the spatial heteroge-
neity in the empirical data. Unmodelled misclassification can thus 
distort overall occupancy estimates and bias spatial covariate effects, 
a concern, especially for rare or endangered species. False-positive 
occupancy models offer a potential remedy (Chambert et al., 2015; 
MacKenzie et al., 2017; Royle & Link, 2006), though they often face 
estimability challenges (Cowans et  al.,  2024; Dussert et  al.,  2024; 
Monchy et  al.,  2025) and multi-species occupancy models widely 
used in camera trap studies (Devarajan et al., 2020) likewise ignore 
false positives. Enhancing classification precision and formally prop-
agating classification uncertainty through occupancy models are, 
therefore, critical steps for reliable automated camera trap monitor-
ing and robust ecological inference. Importantly, although these bi-
ases emerged in our modest study area, the same false-positive rate 
applied to regional or national monitoring networks would generate 
far more spurious detections and could thus mislead broad-scale oc-
cupancy estimates and conservation decisions.

Citizen science projects engage a diverse audience interested in 
quantifying biodiversity. While this study does not explore volun-
teers' motivations or perceptions, maintaining public involvement is 

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70132 by N
ational H

ealth Fund in Poland, W
iley O

nline L
ibrary on [20/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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crucial. Leveraging CS data for AI algorithm training enhances clas-
sification outcomes by combining the strengths of both approaches 
(Fortson et al., 2012; McClure et al., 2020; Tuia et al., 2022; Willi 
et al., 2019). Integrating AI models and CS platforms improves spe-
cies identification accuracy and reduces human labelling efforts. For 
instance, Norouzzadeh et al. (2018) trained a CNN model on 3.2 mil-
lion images from the Snapshot Serengeti dataset, achieving accuracy 
comparable to trained citizen scientists. Similarly, Willi et al. (2019) 
integrated deep learning with CS through a Zooniverse project, 
enhancing species identification accuracy and expediting classifi-
cation. This integration holds promise for large-scale monitoring or 
research, enabling rapid, precise and cost-effective data processing 
across broader spatial and temporal scales in ecological monitoring.

Our findings highlight the challenges of wildlife monitoring 
using camera traps and identify issues of particular concern. The 
imperfect functioning of passive infrared motion detectors intro-
duces significant variability, and even high-quality cameras can miss 
many events at rates that depend on climate and species (Urbanek 
et al., 2019). Hofmeester et al. (2019) identified 40 factors affecting 
animal detection and identification via camera trapping, underscor-
ing the method's complexity. We emphasise that the classification 
process is another potential source of bias in ecological inference 
from camera trap data. Carefully considering these factors is critical 
to improving data accuracy and reliability. Growing efforts are now 
exploring ways to explicitly incorporate classification uncertainty 
into ecological models—particularly occupancy models—by integrat-
ing species-level classification probabilities directly into the estima-
tion process (Cowans et  al.,  2024; Dussert et  al.,  2024; Lonsinger 
et al., 2024; Monchy et al., 2025; Rhinehart et al., 2022). However, 
robust statistical frameworks capable of handling such uncertainty 
across large-scale, multi-species datasets remain under develop-
ment, highlighting the need for further methodological research. 
Adopting multi-event (Pradel, 2005) and hierarchical modelling (Kery 
& Royle, 2020) frameworks offers promising avenues for integrating 
different classification systems and modelling classification errors.
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p = 0.2.
Figure S2. Predicted versus true occupancy (psi) under psi = 0.2 and 
p = 0.5.
Figure S3. Predicted versus true occupancy (psi) under psi = 0.2 and 
p = 0.8.
Figure S4. Predicted versus true occupancy (psi) under psi = 0.5 and 
p = 0.2.
Figure S5. Predicted versus true occupancy (psi) under psi = 0.5 and 
p = 0.5.
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p = 0.5.

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70132 by N
ational H

ealth Fund in Poland, W
iley O

nline L
ibrary on [20/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1111/j.1541-0420.2005.00318.x
https://doi.org/10.1111/j.1541-0420.2005.00318.x
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1111/2041-210X.13905
https://doi.org/10.1111/2041-210X.13905
https://doi.org/10.1007/s10344-023-01742-7
https://doi.org/10.1007/s10344-023-01742-7
https://doi.org/10.1111/2041-210X.12278
https://doi.org/10.1111/2041-210X.12278
https://doi.org/10.5281/zenodo.15785222
https://doi.org/10.5281/zenodo.15785222
https://doi.org/10.1038/nbt.4225
https://doi.org/10.1038/nbt.4225
https://doi.org/10.1111/cobi.12695
https://doi.org/10.1002/eap.2436
https://doi.org/10.1002/eap.2436
https://doi.org/10.1038/s41467-022-27980-y
https://doi.org/10.1038/s41467-022-27980-y
https://doi.org/10.1002/wsb.1015
https://cran.r-project.org/package=renv
https://doi.org/10.1111/2041-210X.14044
https://doi.org/10.1111/2041-210X.14044
https://doi.org/10.1002/rse2.20
https://doi.org/10.1002/rse2.20
https://doi.org/10.1111/2041-210X.13576
https://doi.org/10.1111/2041-210X.13099
https://doi.org/10.1111/2041-210X.13099


    |  15SANTORO et al.

Figure S9. Predicted versus true occupancy (psi) under psi = 0.8 and 
p = 0.8.
Figure S10. Main effect of sensitivity (recall) on RMSE of predicted 
occupancy.
Figure S11. Interaction between detection probability (p) and 
precision on RMSE of predicted occupancy.
Figure S12. Interaction between occupancy probability (psi) and 
detection probability (p) on RMSE of predicted occupancy.
Figure S13. Interaction between occupancy probability (psi) and 
precision on RMSE of predicted occupancy.
Figure S14. Interaction between occupancy probability (psi) and 
sensitivity (recall) on RMSE of predicted occupancy.
Figure S15. Main effect of detection probability (p) on RMSE of 
predicted occupancy.
Figure S16. Main effect of precision on RMSE of predicted 
occupancy.
Figure S17. Main effect of occupancy probability (psi) on RMSE of 
predicted occupancy.

Appendix S1. Confusion matrices for classifier performance.
Appendix S2. GLM summaries of differences in recall and precision.
Appendix S3. Simulation study: effects of classification errors on 
occupancy estimates.
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