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Invasive alien species, such as goldenrods (Solidago spp.), pose significant threats to biodiversity 
and ecosystem services across Europe. Effective monitoring of these species is essential for early 
intervention and informed management, yet traditional ground surveys are often labor-intensive and 
limited in scale. This study aims to evaluate the potential of remote sensing and machine learning 
for detecting and monitoring Solidago spp. in Kampinos National Park, Poland, using multitemporal 
imagery from Sentinel-2 and PlanetScope satellites. We compared the performance of Random Forest 
and One-Class Support Vector Machine classifiers across 17 classification scenarios incorporating 
spectral bands, vegetation indices, and temporal statistics. Our results showed that Random Forest 
consistently outperformed One-Class Support Vector Machine (OCSVM) by 1%–15%, achieving the 
highest F1-score of 0.98 using multitemporal Sentinel-2 data and 2%–29% using PlanetScope imagery. 
Sentinel-2 data, with its broader spectral range, provided better large-scale detection accuracy, 
while PlanetScope’s higher spatial resolution enhanced local detail. Goldenrod patches are distinctive 
even in autumn and winter due to living or dry biomass that persists the whole year. In our study 
autumn imagery (October–November) yielded the most reliable detection due to distinct phenological 
characteristics of Solidago during this period. Importantly, our analysis demonstrates that the added 
complexity of vegetation indices does not necessarily improve classification accuracy for goldenrod 
detection. Our findings present high-accuracy invasive species monitoring approach and highlight the 
critical role of phenological timing in remote sensing-based ecological assessments.
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Invasive alien species (IAS) pose a significant threat to biodiversity in the Anthropocene, alongside agriculture, 
deforestation, habitat fragmentation, and climate change1. These species can cause extensive habitat transformation 
and ecosystem disruption, negatively affecting both natural and human-modified environments2. IAS often 
outcompete native flora and fauna, reduce biodiversity, and alter ecosystem processes such as nutrient cycling and 
energy flows3,4. One such invasive genus is Solidago (goldenrods), particularly Solidago canadensis and Solidago 
gigantea, which have become widespread across Europe due to their aggressive dispersal strategies, prolific seed 
production, and vegetative reproduction5–7. Goldenrods severely impact native biodiversity and ecosystem 
services. Their dense monocultures displace native plant communities, degrade habitats for pollinators, and reduce 
agricultural productivity5,6,8. In Poland and Central Europe, they now dominate large portions of post-agricultural 
land, particularly abandoned fields, where they may occupy up to 70% of the area6,9. Despite being considered 
invasive in 49 countries, goldenrods are still cultivated by beekeepers for honey production, complicating efforts 
to control their spread2,10. In Kampinos National Park (KNP) in Poland, the invasion of goldenrods presents a 
pressing challenge for conservation and land management, particularly in areas recovering from agricultural 
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abandonment11. Early detection and accurate monitoring are essential for targeted management of these species 
before they become widespread and difficult to control.

Remote sensing has emerged as a powerful tool for ecological monitoring and invasive species detection, 
offering efficient, repeatable, and large-scale observation capabilities8,9. It is important so that botanists working 
on the goldenrod ecology and eradication, as well as practitioners who should manage invasion, plan actions and 
make decisions are aware that the goldenrod can be easily detected from satellite images. This method is much 
less time consuming and more cost-effective, comparing to in-situ inventory.

Both passive (e.g., multispectral and hyperspectral) and active (e.g., radar, LiDAR) remote sensing systems 
have been used to monitor invasive plant species. Among them, multispectral sensors have proven especially 
useful due to their sensitivity to vegetation spectral characteristics. However, mapping species of the Solidago 
genus using remote sensing has been addressed in only a few studies, most of which have relied exclusively on 
optical data from the visible and reflective infrared spectra.

The detection of Solidago altissima was studied by Ishii and Washitani10 as well as Rizaludin Mahmud et 
al.11. In the former case, the authors applied generalized linear regression models to high-resolution airborne 
hyperspectral data collected in spring, achieving a prediction accuracy of 85% for goldenrod mapping. In the 
latter study, detailed field spectroscopy data acquired during the flowering period enabled the development of 
a goldenrod-specific vegetation index. This index was then applied to a WorldView-2 image from autumn, with 
classification performed using a maximum likelihood classifier and thresholding. Notably, both studies relied on 
single-date remote sensing imagery. Koco et al.12 and Zagajewski et al.13 mapped occurrences of Solidago gigantea 
and Solidago canadensis. Koco et al. used a GNSS system and unmanned aerial vehicle (UAV) imagery to assess 
goldenrod spread over four consecutive years. Although precise plant positioning was achieved, automated 
classification of UAV multispectral images resulted in very low accuracy (< 50%). In contrast, Zagajewski et 
al. carried out a more advanced study using multitemporal Sentinel-2 and PlanetScope data representing late 
summer and autumn. The classification, performed with Random Forest (RF) and support vector machine 
(SVM) algorithms, yielded high overall accuracies (mostly above 90%), with the best results obtained using 
Sentinel-2 and RF. Sentinel-2 imagery was also used by Chadoulis et al.14 to map Solidago gigantea in a riparian 
environment. In this case, classification was based on phenological metrics derived from multitemporal data, 
using RF, and achieved approximately 80% accuracy. Additional studies attempted to distinguish goldenrods 
from other invasive or expansive species using airborne hyperspectral data in combination with RF, SVM, or 
both algorithms15–17. These approaches achieved varying mapping accuracies depending on the composition of 
the training dataset (specifically, the proportion of the target class within samples) and its size. In several cases, 
high accuracies above 90% were reported when sufficient training samples were available.

Collectively, these studies confirm the high potential of remote sensing for accurate identification and 
classification of goldenrod species. However, many of the cited works relied on airborne data, which presents 
scalability challenges for broad-area mapping. Additionally, the research areas were often limited in spatial 
extent, which may hinder scalability of their findings. Satellite-based approaches offer a more practical solution 
for large-scale, operational monitoring. Among the available sensors, Sentinel-2 and PlanetScope stand out 
due to their high-resolution multispectral capabilities, making automated detection of goldenrod invasions 
more feasible than ever. Sentinel-2, as part of the Copernicus Programme, provides free, high-resolution (10–
60  m) multispectral data with frequent revisit cycles and wide swath coverage, making it suitable for large-
scale ecological assessments12. PlanetScope, a commercial constellation, offers near-daily data at approximately 
3-meter spatial resolution, allowing for detailed, site-specific analysis13. The complementary characteristics of 
these systems, spatial resolution, temporal frequency, and availability, make them highly promising for detecting 
invasive species across heterogeneous landscapes. Importantly, both provide regular and systematic acquisitions 
that enable temporal analysis of plant phenology, which is particularly relevant in the case of goldenrods.

Despite these opportunities, few studies have performed comparative assessment of Sentinel-2 and 
PlanetScope use for goldenrod detection or examined how different machine learning algorithms perform on 
multitemporal datasets. Furthermore, many investigations prioritize algorithmic or sensor comparisons rather 
than integrating phenological information and considering operational needs for invasive species management.

The aim of this study is twofold. First, we address this research gap by evaluating the performance of two 
machine learning algorithms, RF and one-class support vector machine (OCSVM), for detecting Solidago spp. 
using Sentinel-2 and PlanetScope imagery. RF is widely recognized for its robustness to overfitting and its 
ability to process high-dimensional datasets18,19thus it is used in our study as a benchmark method. OCSVM is 
particularly effective when training data are available for only one class, a common limitation in IAS mapping 
due to difficulties in obtaining reliable ground truth for different land cover types20,21. Moreover, OCSVM 
when tested for defect predictions, even if did not outperform RF, it proved to be superior comparing to binary 
classifiers22. Second, this study investigates the role of phenological timing in classification performance. 
Goldenrod patches often remain visible even into autumn and winter due to their tall, persistent biomass, which 
can be green or dry. Therefore, we assess detection performance across the entire growing season, from early 
spring to late autumn, using multitemporal imagery. Our overarching objective is to evaluate how spatial and 
temporal resolution, classification strategy, and image timing affect mapping accuracy, with a focus on practical 
implications for goldenrod monitoring and control.

By focusing on Solidago invasion in an ecologically diverse and well-documented site in Poland, this study 
contributes to the development of scalable, remote sensing–based monitoring frameworks. It also provides 
valuable insights for optimizing the choice of satellite data, phenological windows, and classification approaches 
for improved ecological management and conservation planning.
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Materials
Study taxon and area
Canadian goldenrods (Solidago canadensis L.) and giant goldenrods (S. gigantea Aiton) are two highly invasive 
plant species native to North American that have successfully colonized vast areas of European land23. Due to 
their similar morphology and habitat preferences within their secondary range24we considered these species 
together in this study and referred to them as goldenrods25. In Central Europe, goldenrods are known to form 
dense single-species patches that sometimes cover hundreds of hectares5,6 (Fig. 1). Despite their relatively late 
emerging in spring, goldenrods significantly impact on vegetation throughout the growing season due to their 
rapid growth, high biomass accumulation, substantial litter production, and shading potential, reaching heights 
of up to 2 meters5,6,26. Additionally, goldenrods release allelopathic chemicals that inhibit the growth of other plant 
species27–29. Goldenrod shoot density typically ranges from 150 to 200 per square meter, with some exceeding 
300 shoots per square meter30. A single goldenrod stem can produce over 10,000 seeds31,32which exhibit high 
vigor and maintain viability even under diverse temperature and moisture conditions31. Approximately 50% 
of goldenrod seeds successfully germinate33. After initial seed establishment, goldenrods primarily reproduce 
vegetatively through rhizomes, forming dense clonal patches that comprise up to 90% of the total plant cover in 
abandoned fields5,30.

Our study on goldenrod mapping was conducted in the Mazovia Province in central Poland (Fig.  2), 
specifically in the area west of Warsaw, encompassing the entire KNP and its surrounding neighborhood (SW 
corner: 52.26°N, 20.28°E; NE corner: 52.42°N, 20.92°E). The study area spans 18 km × 43 km, covering a total 
area of 774 km2. These areas included a variety of land use and land cover (LULC) types, predominantly vegetated 
areas, such as forests, grasslands, croplands, and settlements. The site was chosen because it represents a mixture 
of natural ecosystems including protected areas, human-altered environments, and transitional areas.

Over the past centuries the KPN area has been significantly influenced by human activity. Originally 
dominated by forests, the land was deforested, drained, and finally converted into farmlands and meadows34. 
Kampinos National Park was established in 1959 to protect its unique forest, wetland, and dune ecosystems, 
and its species diversity and historical heritage. Mandatory land acquisition began in 1975, leading to the 
abandonment of extensive agricultural activities in the area. This shift allowed ecological processes, such as 
secondary succession to take place, which facilitated the encroachment of invasive species onto abandoned 
rural areas. Goldenrod have notably invaded these fallow and abandoned lands34. Among other types of nature 
conservation, the KNP area is also designated as a Special Area of Conservation and Special Protection Area - 
Puszcza Kampinoska (PLC140001) – under the Natura 2000 network, as part of the Bird and Habitats Directives.

Satellite imagery
Our research explored the feasibility of recognizing Solidago spp. based on two sets of multispectral imagery 
from the Sentinel-2 and PlanetScope constellations. Sentinel-2 offers multispectral data with spatial resolutions 
ranging from 10 m to 60 m, covering visible to short-infrared wavelengths (Table 1)35. An additional advantage 
of the Sentinel-2 is its ability to provide multitemporal observations, enhancing the likelihood of obtaining 
cloud-free images. In mid-latitude regions of Europe, the revisit period ranges from two to three days. Sentinel-2 
images downloaded from CREODIAS36 represent the year 2022, corresponding to the reference period for the 
in-situ data collection. For our study, cloud-free satellite images were selected from the Level-2 A product, which 
provides the bottom-of-atmosphere reflectance data. The selected image data covered several months of the 
growing season, including spring, summer, and autumn (Table 2). For images with limited, sporadic cloud cover, 

Fig. 1.  A vast meadow colonized densely by goldenrod.
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cloudy pixels were replaced with non-cloudy pixels from the nearest available dates (Table 2). Spectral bands of 
varying resolutions were resampled to a 10 m pixel size using the nearest-neighbor method.

PlanetScope is a satellite constellation developed and operated by Planet Labs, Inc37. The constellation 
comprises 130 small CubeSat 3U satellites, a number that continues to grow37. It is the only currently operating 
constellation that enables the daily acquisition of high-resolution satellite imagery for the entire world’s land 
surface. The latest third generation PlanetScope satellite, SuperDove, acquires multispectral data across eight 

Sentinel-2 Percentage of replaced pixels PlanetScope

2022.03.20 0.0 2022.03.19

2022.06.11 (2022.06.26) 0.6 2022.06.11

2022.08.05 (2022.07.23) 0.2 2022.08.05

2022.09.06 (2022.09.26) 0.2 2022.09.05

2022.11.03 (2022.11.08) 1.1 2022.10.10

Table 2.  Acquisition dates (YYYY.MM.DD) of satellite image used in the study. Dates in parentheses indicate 
additional data used to replace cloudy pixels.

 

Sentinel-2 PlanetScope

Band Central wavelength (nm) Bandwidth (nm) Spatial resolution (m) Band Central wavelength (nm) Bandwidth (nm)

B1 442.7 21 60 B1 443 20

B2 492.4 66 10 B2 490 50

B3 559.8 36 10 B3 531 36

B4 664.6 31 10 B4 563 36

B5 704.1 15 20 B5 610 20

B6 740.5 15 20 B6 665 31

B7 782.8 20 20 B7 705 15

B8 832.8 106 20 B8 865 40

B8a 864.7 21 20

B9 945.1 20 60

B10 1373.5 31 60

B11 1613.7 91 20

B12 2202.4 175 20

Table 1.  Spectral characteristics of Sentinal-2 and planetscope data. The italics bands indicate those that are 
interoperable once between the two sensing systems.

 

Fig. 2.  Illustration of the analyzed area covering the Kampinos National Park and nearby area in the north-
west of Warsaw. Orthophotomap from Geoportal WMS service is used as a background in the map.
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spectral bands, six of which align with Sentinel-2 channels (Table 1). PlanetScope images selected for this study 
represent cloud-free bottom-of-atmosphere surface reflectance (Level-3B) at a spatial resolution of three meters. 
The PlanetScope data acquisition dates correspond to those of Sentinel-2, except for autumn data acquired in 
October for PlanetScope and November for Sentinel satellites (Table 2).

Reference data
Accurate reference data is essential for training and validating remote sensing-based classification models, 
particularly when mapping specific plant taxa such as invasive Solidago spp. In this study, we developed a 
reference dataset using two main sources: the national Topographic Objects Database (Baza Danych Obiektów 
Topograficznych, BDOT)38 and in-situ field surveys conducted during the 2022 growing season (August–
November). We used BDOT polygons to identify and delineate non-Solidago LULC classes including buildings, 
roads, grasslands, croplands, forest stands, and water bodies (Table 3). These polygons were additionally visually 
verified and confirmed using high-resolution orthophotos and PlanetScope imagery from the same period. 
To account for possible temporal mismatches and classification ambiguity, grasslands and croplands were 
additionally confirmed via field visits. Reference data for Solidago spp. were collected only during field surveys 
when polygons with full cover of Solidago spp. were recorded in SW Maps software for smartphones (SW Maps, 
version 2.9.1.1 (06.07.2022), https://aviyaantech.com/swmaps/index.html). The reference polygons for all 
analyzed LULC classes were collected to represent homogenous cover with the minimum area of at least 20 m x 
20 m, ensuring that each polygon could be accurately represented by a single pixel in both the PlanetScope and 
Sentinel-2 images. These reference polygons were designed to provide high-quality samples for training machine 
learning classifiers and validating classification results. The homogeneity of the cover within each sample (pixels) 
allowed for use of the same sets of samples for the classification of both satellite datasets.

Next, all polygons (obtained from BDOT and from field surveys) were overlayed with Sentinel-2 pixels grid 
(10 m x 10 m). Final sets of reference polygons were generated by selecting only those pixels, that were covered 
in 100% by a polygon of a certain LULC class.

To minimize the potential influence of autocorrelation on classification and accuracy assessment, reference 
polygons for all classes were divided into two groups: training and validation. This division ensured an unbiased 
accuracy assessment by preventing the use of samples from a reference polygon dedicated to training the 
classifiers in the validation process. Finally, to prepare the sets of training and validation samples, stratified 
random sampling method was applied within the reference polygons. An area representing a polygon of 10 m x 
10 m corresponding to the Sentinal-2 pixel was set as a single sample. Details regarding the number of samples 
used during the training phase are provided in Section “Random forest” for the Random Forest algorithm and 
in Section “One-class classifier”, for the OCSVM algorithm.

For the validation samples the proportion was estimated from the BDOT dataset, with the assumption 
that the Solidago spp. class constituted one-third of the grassland class. Due to the limited number of Solidago 
polygons, the number of Solidago samples was set at 500, and the sample number for the remaining classes were 
adjusted accordingly, based on their class coverage in the BDOT database. The estimated number of validation 
samples for each LULC class is listed in Table 4.

Land cover class Number of validation samples

Solidago 500

Artificial surfaces 100

Broadleaf trees 1300

Buildings 50

Coniferous trees 1500

Croplands 650

Grasslands 1000

Water bodies 130

Table 4.  Analyzed LULC classes and number or validation samples.

 

BDOT layer name Class characteristics Represented LULC class

BUBD Building outlines Buildings

KUKO Transportation hub (only a sub-class of parking spaces used) Artificial surfaces

PTKM Transportation network (roads, railways) Artificial surfaces

PTLZ Forests, wooded areas Broadleaf and coniferous tree cover

PTTR Grasslands Natural and agricultural grasslands

PTTR Croplands Croplands

PTWP Surface waters Water bodies

Table 3.  Description of land cover and land use (LULC) classes of interest from the topographic objects 
database (BDOT) database used for Preparation of reference data.
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Methods
Classification procedure
Two machine learning algorithms were tested for the identification of Solidago spp.: RF and OCSVM. The 
characteristics of these algorithms, their usage descriptions, and the applied parameters are provided in the 
following subsections.

For both algorithms and image data sources, various combinations of classification features were utilized. 
This included the classification of spectral bands from single and multiple images within the prepared time 
series, as well as vegetation indices and statistics derived from these features. The selected indices were among 
the most commonly used, facilitating the analysis of different vegetation characteristics39 (Table 5).

•	 Summing up, four types of features have been usedSpectral reflectance data from ten bands of Sentniel-2 and 
eight bands of PlanetScope. Classifications on Sentinel-2 were performed only on bands with 10 and 20 m 
spatial resolutions (strategy 1), excluding the 60 m spatial resolution bands due to their limited usefulness for 
land surface analyzes48,49. The exception was the direct comparison of Sentinel-2 and PlanetScope data, where 
all corresponding bands, including band 1 (coastal blue) from Sentinel-2 (strategy 2) were used. PlanetScope 
imagery was analyzed with native 3 m spatial resolution.

•	 Vegetation indices;
•	 Multitemporal statistical parameters from spectral bands: minimum, maximum, mean, median, and standard 

deviation values from five dates.
•	 Multitemporal statistical parameters from vegetation indices: minimum, maximum, mean, median, and 

standard deviation values from five dates.

Different combinations of these features were used to design classifications for 17 scenarios for each satellite 
dataset, as summarized in Table 6.

Scenario Features Number of Sentinel-2 features Number of Planet Scope features

1 Image from March 10 8

2 Image from March + VIs 10 + 8 8 + 8

3 Image from June 10 8

4 Image from June + VIs 10 + 8 8 + 8

5 Image from August 10 8

6 Image from August + VIs 10 + 8 8 + 8

7 Image from September 10 8

8 Image from September + VIs 10 + 8 8 + 8

9 Image from October/November 10 8

10 Image from October/November + VIs 10 + 8 8 + 8

11 Spectral bands from 5 dates 5 × 10 5 × 8

12 Spectral bands from 5 dates + Vis 5 × 10 + 5 × 8 5 × 8 + 5 × 8

13 VIs from 5 dates 5 × 8 5 × 8

14 Statistics from 5 dates 5 × 10 5 × 8

15 Statistics of VIs 8 × 5 8 × 5

16 Statistics from 5 dates + statistics of VIs 5 × 10 + 8 × 5 5 × 8 + 8 × 5

17 All possible features: spectral bands from 5 dates + VIs + statistics from 5 dates + statistics from VIs 5 × 10 + 5 × 8 + 5 × 10 + 8 × 5 5 × 8 + 5 × 8 + 5 × 8 + 8 × 5

Table 6.  Overview of classification feature combinations used in various classification scenarios. VIs – 
vegetation indices.

 

Index name Acronym Equation Sentinel-2 bands used PlanetScope bands used References

Green normalized difference vegetation index GNDVI (NIR – Green)/(NIR + Green) B08, B03 B08, B04 40

Merris terrestrial chlorophyll index MTCI (NIR – Red-Edge)/(Red-Edge – Red) B08, B05, B04 B08, B07, B06 41

Normalized differential red-edge index NDRE (NIR – Red-Edge)/(NIR + Red-Edge) B08, B05 B08, B07 42

Normalized difference vegetation index NDVI (NIR – Red)/(NIR + Red) B08, B04 B08, B06 43

Optimized soil adjusted vegetation index OSAVI (NIR – RED)/(NIR + RED + 0.16) B08, B04 B08, B06 44

Soil adjusted vegetation index SAVI (NIR – RED)/(NIR + RED + 0.5) B08, B04 B08, B06 45

Simple ratio SR RED/NIR B08, B04 B08, B06 46

Vegetation index VI NIR/RED B08, B04 B08, B06 47

Table 5.  Vegetation indices used in the classification of Solidago spp. Including their equations and 
information of the spectral bands utilized. NIR – near infrared.
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Finally, to directly compare the satellite datasets, an additional test was performed (strategy 2). This test 
involved classifying Solidago spp. using the RF classifier on the interoperable spectral bands of Sentinel-2 
and PlanetScope (six bands). For each of the five data acquisition dates, classification was performed on the 
equivalent bands from both sensing systems. Bands 1 and 2 correspond between both sensors. Band 3 from 
Sentinel-2 corresponds to band 4 from PlanetScope and band 4 to band 6. Finally, band 5 and 8a of Sentinel-2 
sensors are equivalent to bands 7 and 8 of PlanetScope data, respectively (Table 1).

Random forest
RF is a well-tested and frequently used machine learning algorithm for various classification tasks, particularly 
in EO analyzes18,19,50–52.

For the RF classification, two main parameters were set. The first was the number of decision trees that built 
the forest (500). Such high number of trees may be time consuming but ensures the repeatability of results in 
the context of accuracy performance51. the second parameter determined the number of features selected for 
each split in the tree. The square root of the number of input features was selected to optimize the classification 
computation. Based on previous research indicating improved performance of the RF classifier with a larger 
number of training samples13,16we used 1000 samples per class for all RF classification tests. These samples were 
randomly selected from the previously prepared reference datasets and represented eight different LULC classes.

One-class classifier
The second classifier used was the OCSVM algorithm20a machine-learning technique for anomaly detection. 
The OCSVM models a one-class problem, to identify unusual and infrequent occurrences in a dataset. It 
constructs a hyperplane to maximize the margin around the majority data points, effectively isolating potential 
outliers or anomalies. This method is particularly useful for unbalanced datasets with a large proportion of 
normal cases relative to anomalies. The OCSVM has a variety of applications, including fraud detection, network 
security, and quality control, due to its ability to classify instances as either normal or abnormal. In satellite 
data classification, OCSVM has been successfully applied, for example, for building detection with Sentinel-2 
images21 or sea ice detection on Sentinel-1 SAR images53. Unlike multiclass classifiers such as RF, it does not 
require sample collection for classes of no interest. For instance, in the current tests using RF, samples from seven 
additional classes were used.

The performance of the OCSVM classifier can be optimized by adjusting two specific parameters, γ (gamma) 
and ν (nu). γ indicates the kernel width, that is, the Gaussian radial basis function while ν describes the fraction 
of outliers in the training set. To determine the optimal combination of both parameter values, a grid search was 
conducted as applied by Krupinski et al.21. This search tested 15 γ values and 10 ν parameter values, resulting in 
a total of 150 combinations. The applied parameter values are listed in Table 7.

In all 17 scenarios (Table 6), Solidago was classified using each possible combination of γ and ν parameters. 
The same procedure was applied for Sentinel-2 and PlanetScope imagery.

Each classification process was divided into two steps. First, parameter tuning was conducted using a training 
set (500 Solidago samples only) and a testing set (7500 samples: 500 Solidago and 7000 non-Solidago) for each 
of the 150 parameter combinations within each scenario. This step aimed to identify the optimal parameter 
combination.

Figure 3 illustrates the parameter tuning procedure for one of the 17 scenarios, showing 150 OCSVM 
classifications in the form of an accuracy board. Each rectangle on the board displays accuracy metrics for a 
combination of OCSVM parameters. Values in red indicate the F1-score of the Solidago class, and values in blue 
indicate the producer’s (top of rectangle) and user’s (bottom of rectangle) accuracy. The green line marks the best 
result for that scenario. The board also included values of the γ and ν parameters used on X and Y axis.

The second step is an accuracy assessment based on a validation set. Although the training of the OCSVM 
classifier required only samples from one class, non-Solidago samples were also required to perform the complex 
accuracy assessment. In this phase 5230 samples (500 from Solidago and 4730 from non-Solidago) were used, as 
presented in Table 4.

Results
Comparison of classification results
The accuracy of Solidago spp. classification was assessed using a standard remote sensing method for computing 
the accuracy matrix and deriving accuracy measures, including F1-score, user’s, producer’s and overall accuracy. 
We used mainly F1-score as an indicator of the quality of classification because it represents the balance between 
the measures of the user’s and producer’s measures for each analyzed class. Figures  4 and 6 present the F1-
score values obtained for the Solidago spp. class in 17 classification scenarios using two types of satellite images 
(Sentinel-2 and Planet-Scope) for the RF and OCSVM classifiers, respectively. The accuracy measures of the 
remaining (opponent) classes were of little interest in this study.

Random Forest classification.

Parameter Values

Gamma (γ) 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,210

Nu (ν) 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 7.  List of values used in the grid search of OCSVM classifications.
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For the RF classifier, the results (F1-scores) demonstrated relatively high accuracy across all scenarios and for 
both imagery sources. The highest F1-score of 0.98 was achieved using all possible combinations of Sentinel-2 
data and their derivatives (scenario 17). In contrast, the lowest score of 0.71 was observed with the classification 
based on a single date (June) of PlanetScope data (Fig. 4; Table 8).

Sentinel-2 data generally yielded more consistent accuracy across different dates, except for the September 
image, which had the lowest values. PlanetScope data provided more differentiated results between the 
analyzed dates, with the June data providing the weakest result. For both datasets, autumn imagery (October 
or November) was crucial for achieving a high classification accuracy for Solidago spp. Additionally, F1-scores 
were higher for Sentinel-2 data compared to the PlanetScope data, with differences ranging from approximately 
1 and 16%, depending on the scenario (Fig. 4). Overall accuracy for all scenarios was also higher for Sentinel-2 
classifications (Table  8), reaching over 0.98 in the best scenario (17), compared to slightly lower values for 
PlanetScope data in the same scenario (0.97).

Scenarios utilizing multitemporal data generally resulted in higher accuracy scores compared to those 
based on single date images. Most F1-scores exceeded 0.9, except for scenario 15. which used yearly statistics of 
vegetation indices and yielded the lowest values from all classifications utilizing multitemporal data (0.87 and 0.8 
for Sentinel-2 and PlanetScope data, respectively). The best results for the Sentinel-2 data were obtained using 
all possible data sources (scenarios 17–0.98), while the optimal classification for PlanetScope data was achieved 
with spectral bands from multitemporal imagery (scenario 11–0.97).

Figure 5 shows the F1-score for Solidago spp. classification using the RF algorithm performed on a reduced 
number of spectral bands (strategy 2). Only the bands that correspond between the two sensing systems were 
used. The analysis did not reveal obvious trends or advantages of either system for mapping Solidago spp., and the 
received F1-score values differed by a maximum of 5.6% (Table 9). For August and September, Sentinel-2 data 
yielded higher F1-scores, while for the three remaining dates, the PlanetScope system received better results. The 
highest F1-score was achieved with the PlanetScope data for the image from October (0.87), and the best result 
for Sentinel-2 was only slightly worse for the image from August (0.86). The lowest values for both sensors were 
observed for June with PlanetScope scoring 0.71 and Sentinel-2 scoring 0.68. Both sensors, demonstrated low 
user’s accuracy of less than 0.6 (Table 9).

Features importance
As part of the RF classification, Gini importance was calculated, expressing the mean decrease in impurity19. 
Such measures can be considered as indications of the level of importance of the features used in the 
classification, though should be interpreted with caution54. The Gini index was compared for classification based 

Fig. 3.  Example of a grid search results - accuracy board for the classification of Sentinel-2 dataset (the first 
step of analysis - the parameters tuning).
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Scenario

Sentinel-2 PlanetScope

UA PA F1-score OA UA PA F1-score OA

1 0.795 0.852 0.822 0.924 0.833 0.726 0.776 0.897

2 0.882 0.776 0.826 0.925 0.843 0.710 0.771 0.891

3 0.808 0.934 0.866 0.946 0.588 0.892 0.709 0.901

4 0.802 0.938 0.865 0.937 0.586 0.894 0.708 0.864

5 0.810 0.910 0.857 0.905 0.765 0.912 0.832 0.886

6 0.806 0.916 0.858 0.908 0.745 0.928 0.826 0.887

7 0.674 0.894 0.769 0.911 0.657 0.834 0.735 0.909

8 0.689 0.892 0.778 0.913 0.677 0.810 0.738 0.899

9 0.939 0.864 0.900 0.933 0.874 0.860 0.867 0.914

10 0.941 0.860 0.899 0.934 0.888 0.856 0.872 0.902

11 0.956 0.988 0.972 0.976 0.970 0.970 0.970 0.955

12 0.965 0.994 0.979 0.977 0.947 0.966 0.956 0.962

13 0.949 0.930 0.939 0.943 0.823 0.946 0.880 0.924

14 0.953 0.970 0.961 0.971 0.942 0.976 0.959 0.963

15 0.853 0.894 0.873 0.934 0.706 0.918 0.798 0.912

16 0.948 0.984 0.966 0.979 0.886 0.964 0.923 0.965

17 0.971 0.994 0.982 0.982 0.944 0.974 0.959 0.972

Table 8.  Accuracy measures for the Solidago class obtained from the random forest classification scenarios 
used in strategy 1. UA: User’s accuracy; PA: Producer’s accuracy; OA: Overall accuracy.

 

Fig. 4.  Graph representing F1-scores of the Solidago class for 17 classification scenarios using Random Forest 
classifier (strategy 1).
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on the spectral bands for each acquisition date. It was not analyzed for classification using multitemporal data 
or spectral indices because of the extensive combination of classification features. Tables 10 and 11 present the 
relevance of particular bands of the Sentinel-2 and PlanetScope data, respectively, from the classifications in 
which all available spectral bands were used. For Sentinel-2 data, the SWIR bands B11 and B12 were consistently 
the most informative for all separate acquisition dates used in the study, followed by the NIR band (B8). Band B5, 
representing the red edge part of the electromagnetic spectrum, was the least important, considering the mean 
Gini index values from all images (dates). In the classifications based on PlanetScope imagery, the NIR band 
(B8) outperformed the other channels, whereas B1, the coastal blue band, was the least useful. In the second 
classification strategy (Tables 12 and 13), in which only the corresponding bands of both sensing systems were 
used, the NIR bands were found to be the most crucial for both EO datasets. The B3 band (green) of Sentinel-2 
and B1 band of PlanetScope were the least informative.

OCSVM classification
The highest accuracy of the OCSVM classification, measured by F1-score was 0.9 for Sentinel-2 and 0.91 for 
PlanetScope data (Table  14). For the Sentinel-2 data the best accuracy was achieved for scenario 16, which 
utilized statistics from the spectral bands and vegetation indices across five dates. The lowest result for the 
Sentinel-2 data (F1-score of 0.7) was obtained for the September image combined with the VIs (scenario 8). 

Acquisition date

Sentinel-2 PlanetScope

UA PA F1-score OA UA PA F1-score OA

2022.03.20 0.691 0.788 0.736 0.901 0.788 0.704 0.743 0.885

2022.06.11 0.554 0.882 0.681 0.890 0.580 0.898 0.705 0.897

2022.08.05 0.801 0.920 0.857 0.914 0.760 0.898 0.823 0.892

2022.09.06 0.671 0.854 0.752 0.876 0.606 0.842 0.705 0.895

2022.10/11 0.915 0.736 0.816 0.911 0.886 0.858 0.872 0.907

Table 9.  Accuracy measures derived for the Solidago class in the random forest classification at different 
acquisition dates in strategy 2.

 

Fig. 5.  Graph of F1-score values for the RF classification of Solidago spp. based only on the corresponding 
spectral bands.
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Spectral band March June August September October Mean of Gini importance

B1 0.115 0.091 0.104 0.083 0.071 0.093

B2 0.137 0.101 0.104 0.112 0.148 0.121

B4 0.110 0.135 0.139 0.129 0.095 0.121

B6 0.219 0.180 0.182 0.170 0.184 0.187

B7 0.165 0.193 0.168 0.157 0.185 0.174

B8 0.254 0.299 0.302 0.350 0.318 0.304

Table 13.  Classification feature relevance expressed by Gini importance for RF classifications using 
planetscope imagery based on spectral bands that corresponds to Sentinel-2 data. The highest mean value is 
bolded and underlined, while the lowest is in italics.

 

Spectral band March June August September November Mean value of Gini importance

B1 0.188 0.088 0.101 0.104 0.125 0.121

B2 0.129 0.151 0.114 0.130 0.102 0.125

B3 0.093 0.120 0.142 0.099 0.091 0.109

B4 0.165 0.191 0.186 0.159 0.225 0.185

B5 0.160 0.186 0.181 0.188 0.179 0.179

B8A 0.265 0.265 0.275 0.319 0.279 0.281

Table 12.  Classification features relevance expressed by Gini importance for RF classifications using Sentinel-2 
imagery based on spectral bands that corresponds to planetscope data. The highest mean value is bolded and 
underlined, while the lowest is in italics.

 

Spectral band March June August September October Mean value of Gini importance

B1 0.095 0.074 0.086 0.070 0.054 0.076

B2 0.116 0.082 0.085 0.092 0.112 0.097

B3 0.079 0.088 0.099 0.088 0.064 0.083

B4 0.078 0.086 0.100 0.095 0.066 0.085

B5 0.077 0.104 0.081 0.072 0.110 0.089

B6 0.173 0.146 0.155 0.137 0.140 0.150

B7 0.140 0.169 0.136 0.142 0.169 0.151

B8 0.241 0.252 0.258 0.304 0.284 0.268

Table 11.  Classification features relevance expressed by Gini importance for RF classifications using 
planetscope imagery. The highest mean value is bolded and underlined, while the lowest is in italics.

 

Spectral band March June August September November Mean value of Gini importance

B2 0.101 0.112 0.066 0.077 0.086 0.088

B3 0.089 0.054 0.099 0.071 0.063 0.075

B4 0.088 0.123 0.124 0.118 0.090 0.109

B5 0.044 0.056 0.082 0.077 0.041 0.060

B6 0.090 0.100 0.062 0.061 0.082 0.079

B7 0.077 0.075 0.056 0.079 0.072 0.072

B8 0.075 0.128 0.104 0.113 0.125 0.109

B8A 0.096 0.079 0.089 0.142 0.081 0.097

B11 0.155 0.159 0.202 0.153 0.175 0.169

B12 0.185 0.115 0.116 0.110 0.185 0.142

Table 10.  Classification feature relevance expressed by Gini importance for RF classifications with Sentinel-2 
imagery. The highest mean value is in bold and underlined and the lowest is in italics.
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The highest accuracy for PlanetScope data was obtained for the combined use of spectral bands from all dates 
and their derivatives (scenario 17) (Fig.  6). The lowest accuracy for PlanetScope was seen with the spectral 
bands from the August image (0.55). With only a single Sentinel-2 image used, the highest F1-score of 0.86 
was achieved from June data, where spectral bands were combined with vegetation indices (scenario 4). For 
PlanetScope, the best results for a single date were obtained for images from March (0.81), which were based 
purely on the spectral bands.

A comparison of both classifiers shows that RF enables more accurate classification than the OCSVM across 
the available datasets. The differences in the F1-score values for particular scenarios ranged from 1 to 28%. In all 
scenarios, the Sentinel-2 data yielded higher accuracies with the RF classifier. For PlanetScope, RF outperformed 
OCSVM in all scenarios except scenarios 3 and 4. For both the classifiers, the Sentinel-2 image from September 
provided the weakest results. Similarly, for both algorithms, multitemporal datasets (scenarios 11–17) tended to 
ensure more accurate results.

Solidago maps
Classification scenarios that performed best for both classifiers and datasets were used to prepare maps of the 
extent of goldenrods within the KNP. Figure 7 shows the distribution of Solidago spp. derived from Sentinel-2 
and PlanetScope imagery using the RF algorithm. The maps resulting from the RF classification presented a very 
similar distribution of Solidago spp. in both datasets, with patches of different sizes scattered in the analyzed 
area. Slightly larger fragmentation is visible in the map based on PlanetScope data (Fig. 7b), particularly in the 
western part, which may originate from the different classification results and pixel sizes of the dataset used. 
From the perspective of the entire study area, good differentiation was observed between Solidago spp. and 
forested areas (as seen on the orthophoto map in the background). Most Solidago spp. occurs in grasslands or 
agricultural areas.

The maps representing the extent of Solidago spp. derived from the OCSVM classifier and the two datasets 
(Fig. 8) were even more similar to each other than those derived from the RF classifier (Fig. 7). It can also be 
observed that the plant extent was larger in the OCSVM classification map than in the RF maps. To some extent, 
this may result from the lower classification accuracy of the OCSVM results as compared to RF, with a slightly 
larger overestimation of the Solidago extent (Tables 8 and 14). Additional computations confirm this fact. The 
area covered by Solidago spp. classified by OCSVM on Sentinel-2 data (9895 ha) was 2180 ha larger than that 
derived from RF. Similarly, the area estimated from PlanetScope imagery and OCSVM (10650 ha) exceeded 
the RF result by 4250  ha. In general, the distribution of Solidago spp. on the maps was similar between the 
classification algorithms and satellite datasets, with the occurrence of invasive plants dominated either grassland 
or agricultural land. Figure 9 illustrates subsets of classification results for two areas (AOIs) for both satellite 
datasets and two classification algorithms. The illustrations present differences in the classification results and 
allow comparison with orthophoto (Fig. 9a and f).

Discussion
This study demonstrates the applicability of remote sensing and machine learning techniques for detecting and 
monitoring of Solidago spp. in a real-world conservation setting. Unlike many previous studies that focus on 
algorithm performance in controlled or small-scale settings, our research evaluated classification accuracy for a 

Scenario

Sentinel-2 PlanetScope

UA PA F1-score OA UA PA F1-score OA

1 0.708 0.800 0.751 0.949 0.555 0.892 0.685 0.921

2 0.677 0.840 0.750 0.946 0.764 0.870 0.814 0.962

3 0.857 0.780 0.817 0.967 0.795 0.720 0.756 0.955

4 0.822 0.880 0.851 0.971 0.579 0.818 0.678 0.926

5 0.795 0.644 0.712 0.950 0.705 0.444 0.545 0.929

6 0.824 0.702 0.758 0.957 0.672 0.540 0.599 0.931

7 0.723 0.762 0.742 0.949 0.709 0.620 0.662 0.921

8 0.826 0.606 0.699 0.950 0.646 0.616 0.631 0.931

9 0.950 0.728 0.824 0.970 0.813 0.584 0.680 0.947

10 0.853 0.682 0.758 0.958 0.813 0.504 0.622 0.941

11 0.979 0.746 0.847 0.974 0.995 0.802 0.888 0.958

12 0.940 0.816 0.874 0.977 0.998 0.826 0.904 0.983

13 0.905 0.836 0.869 0.976 0.905 0.824 0.863 0.975

14 0.891 0.848 0.869 0.976 0.819 0.808 0.814 0.965

15 0.811 0.902 0.854 0.971 0.739 0.794 0.766 0.954

16 0.937 0.868 0.901 0.982 0.823 0.826 0.824 0.966

17 0.957 0.836 0.892 0.981 0.964 0.860 0.909 0.984

Table 14.  Accuracy measures derived for the Solidago class for the OCSVM classification scenarios used in 
this study (strategy 1). UA: knowledge based; PA: Random Forest; OA = Overall accuracy.
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well-established IAS across a large, heterogeneous protected area. Using operationally available multitemporal 
satellite data, we integrated phenological insights with multi-sensor observations to map Solidago spp. within 
KNP, Poland, a landscape experiencing increasing invasion pressure. The results confirmed that the RF classifier 
outperformed OCSVM across most scenarios, particularly when multitemporal data were included.

RF’s ability to handle high-dimensional input and minimize overfitting has been demonstrated in many 
remote sensing applications18,19and this study confirms its strength in the context of seasonal mapping of 
invasive plants. In contrast, the OCSVM classifier showed greater variability and tended to overestimate the 
presence of Solidago spp., especially when based on early- or mid-season data. This is consistent with known 
limitations of one-class classifiers, which lack information on background heterogeneity20,21. The analysis also 
provides practical insight into the relative utility of Sentinel-2 and PlanetScope imagery. Sentinel-2 consistently 
achieved higher classification accuracy, particularly in multitemporal scenarios, and its broader spectral range. 
(SWIR bands) proved valuable for detecting phenological shifts in Solidago spp. populations. Bands B11 and B12 
were repeatedly identified as key features in RF classifications. These results support some previous work55but 
our study adds the important observation that these spectral advantages translate into measurable differences 
in seasonal detection performance, especially in autumn. Importantly, Sentinel-2 is freely available, making it 
more feasible option for national-scale IAS monitoring. Although PlanetScope data produced slightly lower 
accuracies, its finer spatial resolution (3 m) allowed for more detailed detection of fragmented or narrow Solidago 
patches that might be missed at Sentinel-2’s coarser resolution. This has implications for targeted control efforts 
or site-scale habitat restoration. However, PlanetScope’s commercial licensing presents a significant barrier to 
wide-scale use, particularly for public agencies or conservation Non-Governmental Organizations with limited 
budgets. These findings highlight that the practical trade-off between spatial detail and cost must be considered, 
and that Sentinel-2 data alone may be sufficient for most management applications when classification is 
optimized with temporal and spectral information.

One of the novel contributions of this study is the detailed assessment of phenological timing in classification 
accuracy. While phenology is frequently cited as important in vegetation studies9,56our work quantifies how 
seasonal differences affect the spectral separability of Solidago spp. The highest classification accuracy was 
achieved using autumn imagery (October–November), surpassing even the flowering period in August–
September. This outcome contradicts some earlier findings13,16 that emphasized the blooming phase as the 
optimal detection window. Instead, our results suggest that the senescent stage — when seed heads are prominent 
and co-occurring vegetation is declining—offers better spectral distinction for Solidago. These findings provide 
operational guidance on when to acquire imagery for mapping this species. Additionally, March and June images 

Fig. 6.  Graph illustrating F1-score values of the Solidago class for 17 classification scenarios using OCSVM 
classifier (strategy 1).
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also yielded high classification accuracy under some scenarios. Early spring imagery likely captured the dry 
biomass from the previous season, which remains visible before native vegetation regenerates. Meanwhile, June 
corresponds to a rapid biomass accumulation phase of Solidago spp., producing strong spectral signals in the 
NIR and red-edge bands. This finding underscores the importance of understanding species-specific growth 
stages rather than assuming that general vegetation vigor (e.g., NDVI peaks) aligns with optimal detection. 
Future monitoring efforts would benefit from aligning image acquisition with known phenological milestones 
of target IAS.

Another important finding concerns the relative utility of vegetation indices. While indices like NDVI and 
NDRE are widely used to enhance vegetation classification, their addition in this study did not consistently 
improve classification accuracy. In fact, several scenarios showed slightly lower performance when VIs were 
included, compared to using raw spectral bands alone. This suggests that the spectral signature of Solidago spp., 
especially when tracked across multiple dates, is already sufficiently distinct, and that the computational effort 
of calculating additional indices may be unnecessary in this case. These results align with recent observations 
that spectral richness and multitemporal statistics can outperform indices under certain conditions17. The visual 
comparison of classification maps between sensors and classifiers revealed that both systems captured a similar 
spatial pattern of Solidago spp. distribution, although PlanetScope-based classifications showed slightly more 
fragmentation. OCSVM-derived maps tended to overestimate species extent, highlighting the need for careful 

Fig. 7.  Maps of the study area with classified extent of Solidago spp. using the RF classifier; (a) classification 
of Sentinel-2 data (scenario 17) and (b) classification of PlanetScope imagery (scenario 11). AOI 1 and AOI 2 
indicate locations of subsets presented in Fig. 9.
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interpretation when using one-class methods without extensive field validation. While pixel-level accuracy 
metrics (F1-score, UA, PA) are commonly used, future work could consider incorporating area-adjusted accuracy 
assessments57,58 to better estimate the actual extent of invasion. This is especially relevant when classification 
outputs are used to quantify infested area for planning eradication or restoration measures.

It is worth noting that other open satellite data sources, such as Sentinel-1, provide a different type of 
information (Synthetic Aperture Radar) about objects on the Earth’s surface. These data could potentially 
enhance the performance of algorithms for Solidago spp. detection by contributing complementary features. 
However, verifying this hypothesis requires further research, and thus represents a promising direction for 
developing more advanced and accurate goldenrod classification methods. Notably, our literature review did not 
identify studies that have explored the use of Sentinel-1 data for Solidago spp. detection.

Practical recommendations
The results have broader implications for conservation planning and invasive species management. First, 
the study confirms that combining multitemporal satellite imagery with machine learning provides a viable, 
scalable approach to IAS monitoring. In areas like KNP, where goldenrods are widespread and expanding, timely 
and accurate maps are essential for prioritizing management actions. Second, the identification of optimal 
detection periods enables more efficient monitoring campaigns by aligning image acquisition with phenological 
windows. Finally, the methods tested here should be transferable to other invasive plant species with similar 

Fig. 8.  Maps of the study area with classified extent of Solidago spp. with OCSVM classifier; (a) classification 
of Sentinel-2 data (scenario 16) and (b) classification of PlanetScope data (scenario 17).
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Fig. 9.  Subsets of Solidago spp. classification in two locations (AOI 1 and AOI 2 indicated in Fig. 7) 
representing result from different classifier and datasets; a and f orthophotomap from Geoportal WMS 
service of the selected AOI 1 and AOI 2 (also used as a background in all subsets maps); b classification of 
Sentinel-2 data with RF algorithm in AOI 1; c classification of Sentinel-2 data with OCSVM algorithm in AOI 
1; d classification of PlanetScope data with RF algorithm in AOI 1; e classification of PlanetScope data with 
OCSVM algorithm in AOI 1; g classification of Sentinel-2 data with RF algorithm in AOI 2; h classification 
of Sentinel-2 data with OCSVM algorithm in AOI 2; i classification of PlanetScope data with RF algorithm in 
AOI 2; j classification of PlanetScope data with OCSVM algorithm in AOI 2.
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growth dynamics, especially those dominating disturbed or abandoned land. In conclusion, this study provides 
a practical and ecologically relevant framework for detecting and monitoring Solidago spp. using remote 
sensing and machine learning. The integration of phenological knowledge, multitemporal imagery, and sensor 
comparison advances the field beyond algorithm benchmarking toward real-world application. The findings can 
support environmental agencies and land managers in making informed decisions about where and when to act 
against Solidago invasions, while also contributing to the development of more effective remote sensing tools for 
biodiversity conservation.

Based on our findings, we recommend to use multitemporal Sentinel-2 data (in our study, 5 images from 
March to November) for Solidago spp. mapping, especially for large-scale monitoring. For finer-scale early 
detection or site-specific interventions, PlanetScope data may offer additional spatial detail, however, its cost 
limits its applicability for broad-scale use. The highest classification accuracy was achieved when training was 
performed on stratified samples representing various land cover and land use classes. However, acquiring such 
comprehensive reference data is often time- and cost-intensive. If only Solidago spp. samples are available, a 
decrease in classification accuracy can be expected - from an F1-score of 0.98 (using a Random Forest classifier) 
to 0.90 (using a One-Class SVM classifier). When using only a single image, the maximum achievable F1-scores 
were 0.90 (RF) and 0.85 (OCSVM), respectively.

Our results indicate that the timing of image acquisition throughout the season plays a more critical role in 
detection performance than the use of vegetation indices. These insights can support protected area managers, 
ecologists, and policymakers in designing cost-effective and timely invasive species monitoring strategies.

Conclusion
This study demonstrates the practical potential of combining satellite-based remote sensing and machine learning 
techniques to support the monitoring of invasive goldenrod (Solidago spp.) in Central Europe. By integrating 
multitemporal imagery from Sentinel-2 and PlanetScope with two classification approaches, RF and OCSVM, 
we provide a comparative assessment of methods suited to large-area and fine-scale detection of this ecologically 
impactful species. Our findings highlight the importance of selecting appropriate phenological windows for 
image acquisition. Contrary to common assumptions, autumn (October - November) emerged as the most 
effective period for Solidago detection, likely due to increased spectral contrast with native vegetation. While 
PlanetScope’s higher spatial resolution improved the detail of local mapping, Sentinel-2 consistently delivered 
superior classification accuracy, especially when using its shortwave infrared bands and multitemporal data, 
making it a cost-effective tool for regional monitoring. Among classifiers, RF outperformed OCSVM in nearly 
all scenarios, offering greater stability and accuracy when sufficient reference data were available. OCSVM, 
while useful in data-limited contexts, tended to overestimate species presence and requires careful tuning. 
From a management perspective, this study supports the operational use of Sentinel-2 for broad-scale Solidago 
monitoring and suggests that combining spatial and temporal features can improve detection outcomes without 
relying heavily on complex vegetation indices. These results can inform the design of early-warning systems and 
targeted control efforts in protected and invaded areas. The approach might be adaptable to other invasive plant 
species with distinct seasonal growth patterns, contributing to scalable, satellite-based solutions for biodiversity 
conservation and ecological restoration.

Data availability
Satellite imagery from Sentinel-2 was accessed from CREODIAS (https://explore.creodias.eu/search) where it 
is openly available. PlanetScope imagery was accessed under Education and Research Program and its use is 
limited by Planet Ltd. licensing. In-situ dataset collected for this research is available from the corresponding 
author on reasonable request.
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