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Abstract: Ophidiomyces ophidiicola, the causative agent of ophidiomycosis, poses a potential threat
to wild snakes worldwide. This study aimed to retrospectively investigate the prevalence of
O. ophidiicola in archived snake moults collected from the San River Valley in the Bieszczady Moun-
tains, Poland, from 2010 to 2012. Using qPCR for O. ophidiicola detection and conventional PCR for
clade characterisation, we analysed 58 moults and one road-killed specimen of Zamenis longissimus
and Natrix natrix. A novel combination of primers (ITS2L) was used to simultaneously confirm
SYBR Green-based qPCR results and perform genotyping. O. ophidiicola has been detected from two
Z. longissimus and one N. natrix specimens. The identified clade (I-B) is consistent with those found
in wild snakes of eastern Europe and San River Valley, indicating that O. ophidiicola has been present
in this region for at least a decade. This study underscores the value of historical samples in under-
standing the long-term presence of pathogens and highlights the potential role of environmental
reservoirs in the persistence of O. ophidiicola. Our findings are crucial for informing conservation
strategies for the endangered Aesculapian snake populations in Poland, emphasising the need for
ongoing monitoring and habitat management to mitigate the potential impact of ophidiomycosis.

Keywords: ophidiomycosis; snake fungal disease; SFD; Aesculapian snake; Zamenis longissimus; sheds

1. Introduction

Fungal pathogens are increasingly recognised as a significant threat to wildlife [1].
These pathogens often have the ability to infect a wide range of hosts and demonstrate
environmental resilience [2]. For instance, fungal diseases caused by Batrachochytrium
dendrobatidis, B. salamandrivorans, and Pseudogymnoascus destructans frequently result in
high mortality rates among amphibians and bats [3–5]. Although there is less specific
information available on reptile populations, these animals are also at risk to suffer from
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infectious diseases. Additionally, it is estimated that at least 20% of evaluated reptile species
worldwide are endangered [6]. Emerging pathogens, especially taxa from the Onygenales
order, pose a global concern for reptiles [7], affecting both veterinary care [7,8] and wild
herpetofauna [9,10].

Ophidiomyces ophidiicola is a fungal pathogen within the family Onygenaceae, recog-
nised as the causative agent of ophidiomycosis, also referred to as Snake Fungal Disease
(SFD) [11]. This pathogen may pose a significant threat to snake populations globally [12].
The taxonomy of O. ophidiicola has undergone several revisions and it shares a close phy-
logenetic relationship with other onygenalean fungi that infect reptiles included in the
genera Nannizziopsis, Paranannizziopsis, and Emydomyces [13–15]. O. ophidiicola is believed
to be horizontally transmitted [16] and can persist in soil, particularly in hibernacula (over-
wintering sites), which may serve as reservoirs for the pathogen [17]. It can grow across
a broad range of pH levels and temperatures, and it exhibits tolerance to air dryness and
various natural sulphur compounds [18]. Whereas its growth can be inhibited by other
soil microbes, it thrives in sterilised soil, suggesting that natural microbial communities
play a role in suppressing its proliferation [17]. Infected snakes can transmit the fungus to
healthy individuals through direct contact, which is a particular concern in shared environ-
ments like hibernacula during brumation [16,19]. Reports indicate postnatal mortality in
neonate snakes due to the rapid development of ophidiomycosis, likely transmitted from
the dam to the offspring during or after birth [20]. O. ophidiicola has been detected in at
least 62 snake species across nine families and various continents [12]. It has been linked
to significant declines in snake populations, such as the severe decline in Crotalus horridus
in New Hampshire and high mortality rates in Sistrurus catenatus in Illinois [21,22]. The
fungus infects snakes through the skin, often without the need for pre-existing wounds
or abrasions, although such injuries can increase the likelihood of infection [19]. The in-
fection leads to the development of cutaneous lesions, including regional swelling, scale
oedema, discoloration, and crust formation [19]. In severe cases, the infection can become
systemic, spreading to internal organs such as the lungs, liver, kidneys, and others, leading
to granuloma formation in the tissues [23,24]. Infected snakes may exhibit behavioural
and metabolic disorders, notably thermoregulation and behavioural fever [25,26]. These
conditions impair predator avoidance by increasing basking behaviour [27]. Furthermore,
affected snakes may experience reduced foraging and the suppression of the hypothalamic–
pituitary–gonadal axis, influencing reproduction in a sublethal manner [26,28]. Increased
frequency of ecdysis may help to clear out the cutaneous infection [26,29]. Three O. ophidi-
icola distinct clades were identified [30–32]: Clade I is found exclusively in wild European
snakes; Clade II in North American and European wild snakes, and in a Taiwanese wild
Dinodon rufozonatum and captive snakes worldwide; and Clade III—and related—only in
captive snakes and in a wild Naja atra from Taiwan. Ladner and colleagues [32] suggest that
the fungus likely originated in Eurasia, and that a potential spillover into North America
might have occurred via the pet trade or snake translocations. In contrast, Origgi et al. [33]
present an alternative scenario wherein Clade II might have been introduced into Europe
before the 1950s, since Clade I has not been detected yet outside Europe.

In Europe, O. ophidiicola screenings have increasingly been undertaken, resulting
in the detection of the pathogen in 13 countries and 10 European wild snake species
included in the genera Coronella, Hierophis, Natrix, Vipera, and Zamenis [29,30,33–43]. Both
O. ophidiicola Clades I and II were found in free ranging ophidians of Europe [38,41,44],
and have occurred here at least since the late 1950s [33]. Although the evidence does not
support a definitive conclusion, genotypes associated with more severe disease in North
America (Clade II) appear to result in greater disease severity compared to genotypes
described in Europe (Clade I—[41]). Additionally, a case of Zamenis longissimus mortality is
likely associated with O. ophidiicola Clade II-D/E in Spain [43]. However, a higher infection
prevalence in the continent is best explained by an interaction between host species identity
and pathogen clade, suggesting that this relationship varies among different ophidian
species [41]. Moreover, in Europe, O. ophidiicola appears to exhibit greater tropism towards
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semi-aquatic snakes, i.e., the Natrix genus, and individuals from areas with high human
disturbance; in contrast, the sampling season did not show a significant impact on infection
prevalence [38,41]. Skin lesions induced by O. ophidiicola infection seem to be mostly mildly
severe and located in the ventral scales of adult snakes [40].

The Aesculapian snake (Zamenis longissimus) is distributed from southern Spain to
northern Turkey and the eastern Black Sea coast, reaching the Krasnodar region in Rus-
sia, Georgia, and Turkey [45]. In Europe, its range coincides with deciduous forests in
the temperate zone, with habitat preferences varying geographically. Southern popula-
tions inhabit semi-open, slightly damp areas, while northern populations are found in
river valleys and increasingly synanthropic environments [45–50]. Four isolated areas
exist at the northern edge of its range, including two in Germany, one in the Czech Re-
public, and one in Poland. These populations are considered rare, endangered, and in
need of active protection [45,48–51]. The Polish populations are primarily found in the
Bieszczady and Sanocko-Turczańskie Mountains, with sparse occurrences in Beskid Niski
Mountains [52–54]. However, the populations from Sanocko-Turczańskie Mountains and
Beskid Niski Mountains require further research to understand their size and structure.
Additionally, it is not known whether the Bieszczady and Sanocko-Turczańskie Mountains
populations are connected, especially considering that the Aesculapian snake has a home
range of only 3 km [55]. The most studied, abundant, and well-known population in the
San River Valley (Otryt Range, San Valley Landscape Park, Bieszczady Mountains) was
initially estimated at about 75 individuals in the 1990s, but more recent evaluations place
it at approximately 230 snakes [56]. However, differences in research efforts and meth-
ods might have underrated the initial estimate. Historically tolerated and even revered
by aboriginal communities, the Aesculapian snake faced persecution from new settlers
who arrived in Bieszczady in the 1960s, following the 1940s desettlement during Oper-
ation Vistula [50,57]. The construction of the Solina Dam on the Rivers San and Solina
in the 1960s severely threatened the species by impeding dispersal and contributing to
the extinction of northern populations. Landscape changes, including natural woodland
succession on former farmland and afforestation projects following World War II, further
impacted the species [53]. At its northern range limit, the species shows a strong affinity for
anthropogenic habitats such as compost heaps, manure piles, and sawdust heaps, which
provide stable temperature and humidity conditions crucial for thermoregulation and
successful egg incubation [58,59]. This dependence on human-modified environments is
also observed in other reptile species at their northern European range limits [60,61]. The
lack of such anthropogenic habitats may significantly influence reproductive success and
population structure of Aesculapian snakes [56]. Currently, the main Polish population
of the Aesculapian snake in the Bieszczady Mountains is completely isolated, despite the
species’ continuous range being 30 km away in Slovakia and Ukraine [52,62].

In the 2024 study by Blanvillain and colleagues [41], the prevalence of O. ophidiicola in
Poland in samples collected from March 2020 to June 2022 was among the lowest recorded
in the study, at 2.7% (95% confidence interval [CI]: 0.3%, 5.1%). The study included a
comparable sample size to other inspected locations, but the prevalence remained low.
Out of 185 samples (58 Coronella austriaca; 75 Natrix natrix; 11 Natrix tessellata; 41 Zamenis
longissimus) just 5 were found as qPCR-positive to O. ophidiicola. Interestingly, all the
positives came from the same location, the Bieszczady region, and comprised 4 grass snakes
(N. natrix: 4/10, 40%) and 1 Aesculapian snake (Z. longissimus: 1/41, 2.4%; prevalence for
both species: 5/51, 9.8%). The genotype of O. ophidiicola belonged to I-B, which is primarily
found in wild snakes of eastern Europe [41]. Despite the low prevalence in Z. longissimus,
the detection of the fungus in the San River Valley raises a great concern for one of the last
Polish populations belonging to this species. Therefore, O. ophidiicola as a potential threat
needs attention given the vulnerability and low abundance of the Aesculapian snake’s
isolated population in Bieszczady.

This study aimed to retrospectively investigate O. ophidiicola occurrence in archived
moults of Zamenis longissimus and Natrix natrix from the San Valley Landscape Park, Poland,
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comparing its prevalence to recent findings by Blanvillain et al. [41] and evaluating whether
O. ophidiicola presence could contribute to the persistently low abundance of Aesculapian
snakes in Poland.

2. Materials and Methods
2.1. Study Species, Study Site, and Moult Collection

Active population monitoring projects for the Aesculapian snake were initiated and
conducted by the Institute of Nature Conservation of the Polish Academy of Sciences
between 2009 and 2011, extending up to 2014. The research was conducted in compliance
with the ethical codes and legislation of the Republic of Poland under scientific permits
(DOPozgiz-4200/II-12/1040/09/ed; DOP-OZGIZ.6401.02.3 2011.JRO.1) and ethical permits
(39/2008; 29/2010). As part of these initiatives, snake moults were perpetually collected
until 2014.

The primary objective of these projects was to identify the presence of the Aesculapian
snake in the Bieszczady and Sanocko-Turczańskie Mountains. The historical occurrence
was reviewed [63–65] and in order to confirm historical and current information on the
Aesculapian snake, the fieldwork was carried out in 2009–2013. The research involved
obtaining records of both live and dead individuals during the species’ activity season,
as well as collecting moults and interviewing foresters or local people. Information on
the snake’s occurrence was gathered until 2015. In addition to these efforts, 51 artificial
breeding mounds were set [66]. The mounds were deployed in permanently open areas,
such as meadows, wildlife food plots, and deciduous woodlands. Most of the mounds
were built in stream and river valleys, near existing villages or ruined buildings in villages
depopulated in the 1940s. If it was not possible to build a mound at the planned site where
snakes had been observed, it was set up at another spot, but no further away than 1.5 km
from the planned locality based on data relating to the size of individual territories and
the distances covered by the snake [52,55,62,67]. Concurrently, interviews with locals were
conducted, and new sites were successively included. The mounds were monitored for
snake colonisation every two weeks from April to October, i.e., when the snakes were
active [66].

Surveys were carried out between the villages of Zatwarnica and Rajskie in 2009–2013.
Zamenis longissimus and N. natrix sheds were collected during the described fieldwork
(see further information in Table 1). The snake moults were placed in paper envelopes
and subsequently stored at −20 ◦C at the Institute of Nature Conservation of the Polish
Academy of Sciences (IOP).

Table 1. Specimens sampled and analysed in this study. Subsequent number, IOP (internal) sample
ID, species, location of finding, coordinates of finding, date of finding (yyyymm), and absence or
presence of gross signs are reported.

Number Sample ID Species Location Coordinates Date Gross Signs

1 20 Zl NA NA 200407 y
2 21 Zl Koliba 49.26, 22.51 201008 n
3 22 Nn NA NA NA n
4 23 Zl Zatwarnica 49.23, 22.56 201008 y
5 25 Zl Kamieniołom 49.25, 22.53 201008 y
6 26 Zl Zatwarnica 49.23, 22.56 201008 y
7 28 Zl NA NA 201008 n
8 50 Nn Tartak 49.21, 22.55 201009 n
9 52 Zl Koliba 49.26, 22.51 201109 n

10 53 Nn NA NA NA n



Microorganisms 2024, 12, 1467 5 of 17

Table 1. Cont.

Number Sample ID Species Location Coordinates Date Gross Signs

11 59 Nn NA NA NA n
12 60 Zl Kopiec Żaka 49.23, 22.55 201109 y
13 65 Zl Druga pasieka 49.26, 22.50 201107 n
14 66 Zl Druga pasieka 49.26, 22.50 201107 y
15 69 Zl Zatwarnica 49.22, 22.55 201107 y
16 70 Zl Zakole Sanu 49.25, 22.54 201107 y
17 71 Zl Koliba 49.26, 22.51 201107 n
18 94 Zl Zatwarnica 49.22, 22.55 201106 n
19 95 Zl Zatwarnica 49.22, 22.55 201106 n
20 106 Zl Sękowiec 49.23, 22.56 201107 n
21 107 Zl Zatwarnica 49.22, 22.55 201107 n
22 108 Zl Zatwarnica 49.22, 22.55 201107 n
23 109 Zl Zatwarnica 49.22, 22.55 201107 n
24 111 Zl Zatwarnica 49.22, 22.55 201107 n
25 122 Zl Koliba 49.26, 22.51 201107 n
26 123 Zl Koliba 49.26, 22.51 201107 n
27 124 Zl Koliba 49.26, 22.51 201107 y
28 125 Zl Koliba 49.26, 22.51 201107 n
29 126 Zl Koliba 49.26, 22.51 201107 n
30 127 Zl Zatwarnica 49.22, 22.55 201107 n
31 136 Zl Sękowiec NA 201107 y
32 141 Zl Zatwarnica 49.22, 22.55 201107 n
33 142 Zl Zatwarnica 49.22, 22.55 201107 y
34 144 Zl Dwernik 49.22, 22.62 201108 y
35 145 Zl Dwernik 49.22, 22.62 201108 y
36 147 Zl Zatwarnica 49.22, 22.55 201108 n
37 149 Zl Sękowiec 49.23, 22.56 201108 n
38 155 Zl Dwernik 49.22, 22.62 201108 n
39 175 Zl Dwernik 49.22, 22.62 201108 n
40 179 Zl Koliba 49.26, 22.51 201108 n
41 181 Zl Koliba 49.26, 22.51 201108 n
42 182 Zl Koliba 49.26, 22.51 201108 n
43 186 Zl Kamieniołom 49.25, 22.53 201108 n
44 187 Zl Koliba 49.26, 22.51 201108 n
45 190 Zl Zatwarnica 49.22, 22.55 201105 n
46 191 Zl Zatwarnica 49.22, 22.55 201105 n
47 215 Zl Zatwarnica 49.22, 22.55 201208 y
48 216 Zl Koliba 49.26, 22.51 201205 n
49 218 Zl Dwernik 49.22, 22.62 201207 y
50 223 Zl Zatwarnica 49.22, 22.55 201206 n
51 224 Zl Koliba 49.26, 22.51 201207 n
52 225 Zl Zatwarnica 49.22, 22.55 201207 n
53 226 Zl Zatwarnica 49.22, 22.55 201208 y
54 227 Zl Zatwarnica 49.22, 22.55 201208 y
55 228 Nn Tworylne 49.26, 22.47 201208 n
56 229 Zl Dwernik 49.22, 22.62 201209 n
57 230 Zl Dwernik 49.22, 22.62 201209 n
58 231 Zl Zatwarnica 49.22, 22.55 NA n
59 Martwy 1 Zl Zatwarnica 49.23, 22.55 201205 n

1 Road-killed specimen. Zl—Zamenis longissimus, Nn—Natrix natrix, NA—not assigned; n—no gross signs,
y—visible gross signs.

2.2. Shed Sampling

In September 2022, 57 moults from 2010 to 2012, and two exceptional samples, a
deceased road-killed carcass and a 2004 moult kept previously as a souvenir by a local
citizen, were selected for the analysis in this study. Z. longissimus moults were prioritised
over those of other species (i.e., N. natrix). Each moult was singularly extracted from its
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envelope and examined for gross signs consistent of ophidiomycosis (e.g., brownish crusts,
signs of dysecdysis—see Table 1 and Figure S1).

Three portions of moults (ca. 0.5 × 0.5 cm) were sampled from each specimen. They
were systematically excised from cephalic (when possible), dorsal, and ventral scales, and
dry-collected in a nucleic acid-free 1.5 mL tube. The dorsal and ventral scale excisions
were carried out in distant regions of the trunk. If the moult was showing any gross signs,
an extra portion including the lesion was collected. To avoid cross-contamination, the
procedure was performed using tweezers and surgical scissors sterilised with ethanol 95%
and a Bunsen burner, while surfaces were disinfected with bleach.

2.3. Molecular Analysis and Clade Characterisation

Ophidiomyces ophidiicola presence was firstly assessed via qPCR as described by
Marini et al. [36]. Briefly, DNA was extracted from the moult fractions collected in 1.5 mL
tubes by adding 50 µL of PrepMan Ultra Sample Preparation Reagent (ThermoFisher,
Carlsbad, CA, USA) and 50 mg of 0.5 mm diameter zirconium oxide beads to the vials.
Bullet Blender Storm 24 (Next Advance, Inc., New York, NY, USA) was used to homogenise
the samples for 60 s, followed by a centrifugation (30 s at 13,000 RPM), and these steps
were repeated twice. Samples were heated for 13 min at 95 ◦C with a Techne® Dri-Block®

DB-2D (Buch & Holm, Herlev, Denmark), cooled for 5 min, and centrifuged again (30 s
at 13,000 RPM). Following this, 100 µL of nuclease-free water was added, the samples
were centrifuged (30 s at 13,000 RPM), and 50–75 µL of a supernatant was recovered and
transferred to 1.5 mL tubes. Subsequently, centrifugation was repeated and finally 30–50 µL
of the extract was retrieved. DNA concentration was measured using TECAN Spark®

Multimode Microplate Reader (Table S1). The tubes were either stored at −20 ◦C or di-
rectly used. Aliquots with different DNA concentrations were prepared from each DNA
extract. For each sample, a dilution of 12.5 ng/µL was made. If amplification results were
unsatisfactory for certain samples, additional aliquots at concentrations of 6.25 ng/µL and
25 ng/µL were prepared.

As in Marini et al.ii’s work [36], DNA from each tissue sample was initially tested
in triplicates using an SYBR Green-based qPCR for internal transcribed spacer 2 (ITS2—
primers designed by Bohuski et al. [68], Table S2) within the ribosomal RNA (rRNA)
gene complex of O. ophidiicola and for the mitochondrial NADH dehydrogenase subunit
1 (nad1—primers designed by Lorch et al. [69], Table S2) of O. ophidiicola. Each 10 µL
reaction contained 5 µL of iQ SYBR Green Supermix (Bio-Rad Laboratories Inc., Hercules,
CA, USA), 50 ng of DNA in a volume of 4 µL (12.5 ng/µL—original concentrations in
Table S1), 0.7 µL of nuclease-free water, and 0.3 µL of a 10 µM suspension of forward
and reverse primers. Amplification was performed using a CFX385™ Touch Real-Time
PCR Detection System (Bio-Rad Laboratories Inc., Hercules, CA, USA) with the following
cycling conditions: 3 min at 95 ◦C, 40 cycles of 3 s at 95 ◦C, and 30 s at 60 ◦C, followed by a
melt curve from 65 ◦C to 95 ◦C (increment of 0.5 ◦C and plate read every 5 s). qPCR results,
comprising Ct values, melting curves, and the relative fluorescence units (RFUs), were
analysed using Bio-Rad CFX Maestro software 1.1 (v.4.1.2) to select positive and suspicious
samples to confirm or refute with a further qPCR run for both genomic and mitochondrial
targets. The efficiency of the PCR assay, the positive and negative control used, and the
RFU analysis in the End-Point mode of the software (Bio-Rad CFX Maestro) are reported by
Marini et al. [36]. Subsequently, DNA from each suspected sample was further analysed in
triplicate for each dilution (6.25 ng/µL, 12.5 ng/µL, and 25 ng/µL; i.e., 25, 50, and 100 ng
of total DNA for each reaction, respectively) to rule out false positive results using the
above-mentioned qPCR assay for both ITS2 and nad1 targets.

Further selected samples considered positive were submitted to clade characterisation
by amplification via conventional PCR of the most polymorphic fragments (≤200 bp)
belonging to ITS2, transcription elongation factor 1 α (TEF), and actin (ACT) genes of
O. ophidiicola following Origgi et al. [33] (primers in Table S2). Moreover, we used the
combination of the ITS2 forward primer by Origgi et al. [33] and the ITS2 reverse primer
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by Bohuski et al. [68] to provide a longer conventional PCR product whose sequence can
(i) confirm the ITS2 SYBR Green-based qPCR sensu Marini et al. [36] and (ii) give the most
polymorphic fragment of ITS2 sensu Origgi et al. [33] and Blanvillain et al. [41] at the
same time (see Figure 1 and Table S2). We will refer hereinafter to this primer set as ITS2
Longer (ITS2L).
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Figure 1. The diagram of the primer sets used to amplify the internal transcribed spacer 2 (ITS2)
region within the ribosomal RNA (rRNA) gene complex of Ophidiomyces ophiidicola. The forward
primer from the Origgi et al. [33] PCR assay (in green) and the reverse primer from the Bohuski
et al. [68] qPCR assay (in red) were combined in this study to create the ITS2 Longer (ITS2L) PCR assay.
This assay allows for the characterisation of the clade according to Origgi et al. [33] and Blanvillain
et al. [41], based on single-nucleotide polymorphisms (SNPs), and corroborates the SYBR Green-based
qPCR results as described by Marini et al. [36]. The partial ITS2 used in the image corresponds to a
representative sequence of O. ophidiicola Clade I (genotype I-B according to Blanvillain et al. [41]).

These genomic fragments were amplified using the PyroMark PCR kit (Qiagen, Hilden,
Germany) with the following components: 12.5 µL of PyroMark PCR Master Mix, 7 µL of
nuclease-free water, 2.5 µL of CoralLoad Concentrate, 0.5 µL (500 nM) of a forward primer,
0.5 µL (500 nM) of a reverse primer, and 2 µL (50 ng) of a DNA template, for a total of
25 µL per reaction. The PCR conditions were 95 ◦C for 15 min; 40 cycles of 94 ◦C for 30 s,
52 ◦C (TEF) or 55 ◦C (ACT; ITS2L) or 58 ◦C (ITS2) for 30 s, and 72 ◦C for 30 s; and a final
extension at 72 ◦C for 10 min. The products were then separated on a 2% agarose gel for
visualisation and size determination under a UV transilluminator.

Bands with expected size were excised from the agarose gel and extracted using the
QIAquick® Gel Extraction Kit following the manufacturer’s instructions. Alternatively,
after inspecting the qPCR results or the DNA fragments, amplification products from the
well were directly purified using the QIAquick® PCR Purification Kit according to the
manufacturer’s instructions. Purified PCR products were directly Sanger-sequenced by a
commercial service (Macrogen, Amsterdam, The Netherlands) on both strands using the
same primers employed for the amplification. The resulting sequences were edited and
assembled using BioEdit software (v.7.2.5) and compared with those deposited in GenBank
using the Basic Local Alignment Search Tool (BLAST, https://blast.ncbi.nlm.nih.gov/
(accessed on 29 June 2024)—Table S3).

Samples that yielded successful amplification via conventional PCR for clade char-
acterisation and subsequent sequencing were used to construct a maximum likelihood
phylogenetic tree using MEGA software (v11.0.13). To construct the phylogenetic trees,
we analysed the sequences from our study and a population set of homologous sequences
sourced from GenBank and the literature. The sequences included strains from all lineages
of O. ophidiicola and an outgroup (Pseudoamauroascus australiensis—see Table S4). ACT, TEF,
and ITS2 sequences were concatenated, MUSCLE-aligned, trimmed, and concatenated
again. The Tamura–Nei substitution model was employed, assuming uniform rates across
all sites, a complete deletion of gaps, and 3000 bootstrap replications.

Moreover, ITS2 sequences with single-nucleotide polymorphisms (SNPs), able to
differentiate O. ophidiicola clades according to Blanvillain et al. [41], were aligned with

https://blast.ncbi.nlm.nih.gov/


Microorganisms 2024, 12, 1467 8 of 17

representative O. ophidiicola genotype sequences deposited in GenBank using AliView
(v1.27) and BLAST to obtain the specific genotype.

2.4. Statistical Analysis

To assess the statistical significance of our findings, we utilised the Chi-square test to
examine the dependence between categorical variables in the dataset (i.e., O. ophidiicola
detection against species, month of the year, and gross signs; gross signs against species and
period of the year). A logistic regression analysis was applied to explore the relationship
between the dependent (O. ophidiicola positivity) and independent variables (species, period
of the year, and gross signs) to examine whether species, period of the year, and presence
of gross signs influenced the likelihood of testing positive for O. ophidiicola. A p-value of
<0.05 was deemed significant. Furthermore, we calculated 95% confidence intervals to
estimate the precision of our outcomes. All statistical procedures were performed using
Python (v3.12.3).

3. Results

A total of 58 moults and a road-killed specimen were collected and analysed in this
study. In total, 54 out of 59 samples belonged to Z. longissimus (91.5%), while 5/59 (8.5%)
belonged to N. natrix.

Specimens were collected in ten different locations of Bieszczady Mountains (see Figure 2,
and Table 1—5 specimens do not have specific toponim or coordinates), with Zatwarnica (22
samples) and Koliba (14 samples) being the most represented sampling localities.
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Figure 2. The map of the study area. The figure shows the location and numbers of moults collected
in the site (red dots). The dots are roughly proportional to the sample size. Note that the samples
represented amount to 53 (i.e., the 5 exuviae lacking precise location/coordinates and the road-
killed specimen are not represented in the map—see Table 1). Inset (top right): The location of
Bieszczady Mountains in Poland (red dot). Inset (bottom left): The schematic map of the study
area representing in red the locations with O. ophidiicola detection and in blue the locations with no
O. ophidiicola detections. Map credit: Google Earth [Data SIO, NO-AA, U.S. Navy, NGA, GEBCO
Image Landsat/Copernicus], modified.
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Exuviae were collected mostly during the months of July and August in the years 2011
and 2012 (see Figure 3).
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Figure 3. The distribution of sample quantities, with a total of 59 samples, across sampling times from
2004 to 2010. The histogram shows the number of samples collected (y-axis) for each sampling time
point (x-axis), with data grouped by month and year. The graph was made with Scimago Graphica.

A lower number of specimens were found to have signs consistent with O. ophidiicola
infection (17/59, 28.8%) compared to those without signs of tegument infection.

At least one of the triplicates from eight samples showed suspicious-to-positive results
in the initial runs of SYBR Green-based qPCR, as determined by examining the Ct values,
melting curves, and RFUs. Specifically, sample ID 59, 187, and 228 were suspicious-to-
positive for both targets; ID 28, 149, 179, and 216 were suspicious only for ITS2, and ID
218 only for nad1. Consequently, these eight samples were subjected to a further qPCR
run with the 3-point dilution series of DNA. From this subsequent qPCR amplification,
only three samples yielded positive results. Sample ID 149 was positive in three out of nine
wells for the ITS2 target, with Ct values ranging from 36.27 to 37.55 and one positive call at
an End RFU of 881. Sample ID 218 was positive in two out of nine wells for the nad1 target,
with Ct values of 35.97 and 36.43, and positive calls at End RFUs of 1150 and 914. Sample
ID 228 was positive in all wells for both ITS2 and nad1 targets. For ITS2, the Ct values
ranged from 29.16 to 31.67, with End RFUs ranging from 2094 to 2594. For nad1, the Ct
values ranged from 30.09 to 31.88, with End RFUs ranging from 1843 to 3148. The Ct values
of the positive control ranged from 26.63 to 24.05 for ITS2 and from 23.82 to 24.27 for nad1.
The End RFUs for the positive control ranged from 1735 to 2963 for ITS2 and from 1884 to
2870 for nad1. The melting peaks for the wells of the mentioned samples were between
84 and 84.5 ◦C for ITS2 (with the positive control at 84.5 ◦C) and between 73.5 and 74 ◦C
for nad1 (with the positive control at 73.5–74 ◦C). The amplification and melting curves
generated by Bio-Rad CFX Maestro software for these wells are presented in Figure S2.

Subsequently, DNA from ID 149, 218, and 228 was submitted to conventional PCR for
ACT, TEF, ITS2, and ITS2L for clade characterisation. Under the UV transilluminator, only
sample 228 showed expected bands for all the targets; they were consistent with the targets’
expected size.

qPCR products from ID 149 (ITS2), 218 (nad1), and 228 (ITS2 and nad1) and conven-
tional PCR products from 228 were submitted to Sanger sequencing. Sequences from qPCR
targeting ITS2 of 149 and nad1 of 218 showed 100% identity with O. ophidiicola sequences
in BLAST, while sequences from qPCR of 228 were incomplete (88% identity and 10 gaps
each—Table S3). Amplicons from conventional PCRs (ACT, TEF, ITS2, and ITS2L) of 228
shared 100% identity with O. ophidiicola sequences in BLAST. Sample ID 228 was the only
one submitted to clade characterisation. Subsequently to concatenation, alignment, trim-



Microorganisms 2024, 12, 1467 10 of 17

ming, and a second concatenation, the software-computed sequences were in total 341 bp
long (i.e., 92 bp ACT, 158 bp TEF, and 91 bp ITS2—see Table S3). The resulting maximum
likelihood phylogenetic tree is represented in Figure 4.
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Figure 4. The maximum likelihood phylogenetic tree obtained from three concatenated partial regions
(ACT, TEF, and ITS2) of O. ophidiicola sequences from this study (sample ID 228, arrow), GenBank, and
the literature (Table S4). The blue line, red line, and green line highlight strains belonging to Clade
I, II, and III (and related), respectively, as described by [30–32]. Sample ID 228 clusters with Clade
I sequences. Sequences belonging to Clade II or Clade III (and related) are arranged in agreement
with their lineage identity. Bootstrap support values are represented at nodes. Pseudoamauroascus
australiensis was used to root the tree.

The ITS2L sequence of sample ID 228 was aligned with representative O. ophidiicola
genotype sequences deposited in GenBank to differentiate O. ophidiicola clades according
to Blanvillain et al. [41]. The AliView alignment is shown in Figure 5, while the output of
BLAST pairwise alignment is reported in Table S5. ID 228 showed 100% identity and no
gaps with NWHC 45707-81 (KY474061—an isolate from Czechia), belonging to genotype
I-B according to Blanvillain et al. [41].
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Figure 5. Alignment of the ITS2 sequence from sample ID 228 with four representative ITS2 region
O. ophidiicola genotype sequences according to Blanvillain et al. [41]. Consensus nucleotides (filled
characters) and different single-nucleotide polymorphisms (SNPs—blank characters) compared to
228 (arrow) are highlighted. O. ophidiicola from 228 belongs to the genotype I-B, being identical
to KY47406.

Positive samples belonged to two specimens of Z. longissimus (149, 218) and one of
N. natrix (228). The prevalence for Z. longissimus was 3.7% (2/54, 95% CI [0.0%, 9.3%]), and
20% (1/5, 95% CI [0.0%, 60.0%]) for N. natrix, while for both species combined, it was 5.1%
(3/59, 95% CI [0.0%, 11.9%]). O. ophidiicola detections came from specimens collected during
August 2011 (149: Z. longissimus), July 2012 (218: Z. longissimus), and August 2012 (228:
N. natrix) (see Figure S3). Only one moult out of three that tested positive for O. ophidiicola
showed gross signs consistent with ophidiomycosis (i.e., sample ID 218—see Figure S4).
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The statistical analysis revealed no significant dependence between pairs of cate-
gorical variables including O. ophidiicola detection, time of year (month), species, and
absence/presence of gross signs, as indicated by Chi-square tests (see Table S6). The logistic
regression analysis also supported these findings, showing no significant influence of the
month or clinical signs on the likelihood of testing positive for the fungus. However,
there was a marginally significant association between species and O. ophidiicola detection
(p = 0.0724; see Table S6).

4. Discussion

The findings from this study provide insights into the historical prevalence of Ophid-
iomyces ophidiicola on the ophidiofauna from the San River Valley in the Bieszczady Moun-
tains, Poland. The results are pivotal given the scarcity of data on the occurrence of O.
ophidiicola in isolated snake populations and its implications for conservation efforts. More-
over, it leverages the use of archived and museal samples to give insights on ophidiomycosis
in a local context.

Ophidiomyces ophidiicola has occurred in wild snakes living in the Bieszczady region
at least since 2011. Taking into account the diversity of sample size per species, the total
prevalence of O. ophidiicola resulting from the analysed archived moults (5.1%) appears to
be consistent with the findings coming from decade-newer samples from the same study
site (9.8%, Blanvillain et al. [41]). Furthermore, the same genotype I-B has been detected,
confirming that it was not recently introduced. Given the higher prevalence found in N.
natrix compared to Z. longissimus, in both our study (grass snake: 20%; Aesculapian snake:
3.7%) and Blanvillain et al.’s work [41] (grass snake: 40%; Aesculapian snake: 2.4%), it
is plausible that in this location, grass snakes are the main reservoirs and shedders of O.
ophidiicola. In fact, logistic regression indicated a less-than-significant association between
O. ophidiicola-positive detection and species. It is important to note that the unbalanced
categories of some variables within the samples—only 3 out of 59 samples tested positive
for the pathogen, and only 5 samples belonged to N. natrix—likely limit the statistical
power of the analysis, potentially obscuring true associations. Moreover, it cannot be ruled
out whether any of the collected moults originated from the same individual, and any
“recapture” data cannot be excluded in the analysis. Nonetheless, our data are in line with
other European studies highlighting the greater tropism of the fungus to semi-aquatic
snakes and the Natrix genus [38,41].

The first clinical ophidiomycosis lesions can be observed 8 days after experimental
inoculation [19]. The lack of gross skin lesions on some moults despite the detection of O.
ophidiicola DNA may be a consequence of an initial stage of fungal infection (preclinical
infection) at the time of moulting, a subclinical infection, a clearance of a minor superficial
infection by shedding, or environmental contamination [12,38]. This indicates that the
absence of noticeable skin lesions does not equate to the absence of the fungus. On the other
hand, the association of cutaneous lesions with molecular detection is highly suggestive of
cutaneous ophidiomycosis (i.e., apparent ophidiomycosis—[12,26,36]). However, since the
macroscopic tegumentary signs of ophidiomycosis are nonspecific, it cannot be excluded
that they were caused by other etiologic agents (see [12,13,38]).

Our sampling could have yielded some false negatives because we sampled only three
pieces of moults (plus one additional if gross signs were detected) to avoid destroying the
entire specimen and to facilitate convenient transportation. However, grinding the sheds
into powder before DNA extraction (see [42]) should mitigate this issue by ensuring a more
homogeneous sample and increasing the likelihood of detecting the target DNA.

This study was carried out on archived specimens, where DNA could be more frag-
mented compared to fresh samples. Indeed, two out of three positive samples yield a
successful detection in only one of the two qPCR targets (ITS2 or nad1) likely due to DNA
fragmentation, poor DNA extraction, or low fungal loads. For sample ID 149 and 218, the
Sanger sequencing from the selected qPCR wells—showing melting peaks/temperatures
and positive calls at End RFUs consistent with a positive detection—was fundamental for
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the confirmation of results, since the samples did not give any other specific amplification.
The use of two independent genomic and mitochondrial O. ophidiicola qPCR targets per-
mitted a broader range of detection, reducing the risk of false negative results and giving
complementary information. Therefore, the use of more than one target seems crucial for
retrospective studies on O. ophidiicola. In such cases, implementing an internal control PCR
for host DNA detection could help to assess the quality of preserved nucleic acids and the
reliability of the results (see [40]).

The ITS2 SYBR Green-based qPCR coupled with ITS2L conventional PCR shows
promising potential. Sequencing ITS2L amplicons is an effective method to validate
ITS2 qPCR positive results and simultaneously characterise the fungus. In Marini et al.’s
work [36], all SYBR Green-based qPCR positive results were submitted to direct sequencing
of the qPCR amplicons to provide a proof of concept of the reliability of the method and to
confirm the probe sequence designed for the original TaqMan real-time PCR by Bohuski
et al. [68]. However, in Marini et al.’s work [36], some of the qPCR sequences showed one
or two gaps, due to the potential low-quality outcome of Sanger sequencing when targeting
amplicons < 100 bp (see [70]). With the ITS2L assay, this problem was overcome when the
amplification of the conventional PCR reaction occurred as in sample ID 228. Nonetheless,
the ITS2L assay, as in the ITS2, ACT, and TEF assays according to Origgi et al. [33], was not
able to amplify O. ophidiicola DNA from sample ID 149 and 218. Thus, this approach can
be hindered by the fragmentation of poor-quality nucleic acids, but its reliability would
likely be higher in a prospective study where fresh samples with less DNA degradation are
expected. Furthermore, the ITS2L assay can yield results comparable to the amplification
used by Blanvillain et al. [41] and Origgi et al. [33], given that all the SNPs used to char-
acterise the genotypes are detectable in the sequence (see Figure 1, Tables S3 and S5). The
original nested PCR by Blanvillain et al. [41] used the panfungal primer ITS3 and ITS4 in
the first reaction, and ITS3 with Oo-rt-ITS-R (referred to in this text also as Bohuski RV—see
Figure 1 and Table S2) in the second reaction. The O. ophidiicola-specific primers (Origgi FW
and Bohuski RV) used in ITS2L permit an amplification of a shorter product (c.a. 100 bp
shorter) and should be more specific compared to the second reaction of the nested PCR
used by Blanvillain et al. [41]. The use of the O. ophidiicola-specific primers of ITS2L or
ITS2 primers by Origgi et al. [33] in a nested PCR assay might enhance both sensitivity and
specificity toward O. ophidiicola in the case of genotyping. Moreover, the reduced length
of the amplicons can be particularly useful for old and museal samples with potentially
fragmented DNA (see [33]).

In this study, the clade characterisation via the employment of the maximum likelihood
phylogenetic tree used a concatenation of partial sequences of ACT, TEF, and ITS2, totalling
approximately 350 bp in length. These sequences feature notable SNPs crucial for O.
ophidiicola characterisation, as identified by Origgi et al. ([33]—see Table S3), who employed
them in constructing a single phylogenetic tree per target. Despite the use of shorter
sequences, our findings remain consistent with the previous literature [30–32]. While this
method may provide less detailed resolution compared to phylogenetic analyses utilising
longer sequences, it appears to be effective to simultaneously use multiple O. ophidiicola
DNA regions for comparing different lineages. However, it should be noted that this
method was not capable of clustering subclades within the identified clades, both deleting
or including gaps.

The O. ophidiicola genotype I-B from our study, dating back to 2012, was also the only
subclade detected from the same area in the prospective study by Blanvillain et al. [41].
While no O. ophidiicola from Clade II was identified in the Bieszczady region, its presence is
known to significantly increase the probability of infection in Z. longissimus and is likely
responsible for more severe disease manifestations compared to Clade I [41]. This is further
supported by a case of Aesculapian snake mortality in the Iberian Peninsula, likely due to
ophidiomycosis caused by the II-D/E lineage [43]. The detection of Clade II-D/E across
Europe, particularly in nearby Czechia and Ukraine [41], should be viewed as a significant
menace of pathogen pollution in the San River Valley. Preventing the potential spillover of
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this strain is essential, especially in areas where Z. longissimus is threatened, like the San
River Valley where nesting sites are limited and the snake population is dense.

In particular, limited nesting sites create challenges for females of this group-living
sedentary species [62], forcing them to migrate in search of new sites [56]. This migration
exposes females (and their unlaid oviductal eggs) to increased predation risk. Another
strategy is utilising collective egg-laying sites with other females [52,71]. O. ophidiicola
has demonstrated the ability to survive in natural soils, with Campbell et al. [17] finding
a higher prevalence of the fungus in hibernacula soils compared to topsoils. This sug-
gests that breeding mounds and hibernacula may serve as environmental reservoirs for O.
ophidiicola, which may persist in its viable forms [17,72,73]. Consequently, 2–3 decades ago,
when breeding microhabitats were scarce in the San River Valley, O. ophidiicola could have
expanded its range and hosts in the area through breeding sites. The scarcity of these sites
likely concentrated snake populations, potentially allowing a single infected female to trans-
mit O. ophidiicola to numerous other females and their hatchlings. This scenario underscores
the importance of active conservation through habitat manipulation, such as constructing
artificial egg-laying sites to reduce female density per site and potentially impede pathogen
spread. While the exact origin of O. ophidiicola in this region remains uncertain, as it could
have been naturally present for centuries, its introduction into this Polish population might
also be linked to herpetoculturists’ interest in Aesculapian snakes. Numerous documented
cases of deliberate snake translocations through pseudo-conservation activities exist [62].
Additionally, individual Z. longissimus or N. natrix specimens were occasionally collected
in San River Valley, kept in captivity for several years, and subsequently released [74],
potentially facilitating O. ophidiicola spillover from captive-bred or wild-caught individuals.

Although the magnitude of ophidiomycosis impact on wild snake populations remains
controversial (see [12]), these findings emphasise the importance of ongoing surveillance
and targeted conservation efforts to prevent or mitigate O. ophidiicola effects, particularly
in regions where snake habitats are limited. Effective habitat management and creation
are necessary to reduce snake density and prevent pathogen transmission. Implementing
improved DNA extraction methods and exploring the potential to cultivate and isolate the
fungus, along with updated population estimates for the current decade, are advised to
better understand the contemporary situation in the San River Valley. Additionally, consid-
ering the scarcity of screening initiatives for reptiles and most amphibians in Poland and
the limited studies on fungal pathogens [41,75], the investigation on other mycotic agents,
such as Paranannizziopsis sp. (see [76]), is important to safeguard ophidiofauna. These
future perspectives are crucial for developing effective conservation strategies and ensuring
the long-term survival of vulnerable snake populations in the Bieszczady Mountains.

5. Conclusions

In conclusion, testing fungal pathogens in exuvial material has confirmed the historical
presence of O. ophidiicola in Bieszczady Mountains, which has only recently been discovered
through a prospective study [41]. The employed methodology enabled the investigation of
pathogen prevalence in archived samples at relatively low costs (see [36]). This approach
can provide critical insights into the spread of EIDs in reptile populations over time.

Our findings suggest that O. ophidiicola has been present in the Bieszczady ophidian
population for a considerable period. This long-term presence of the pathogen could be a
contributing factor to the observed low population numbers within the main last remaining
Polish site of Zamenis longissimus. Nonetheless, even if the prevalence of our work is
comparable with the prospective study by Blanvillain et al. [41], we are not able to conclude
whether Clade I-B concurs for a potential lower fitness of Z. longissimus in the studied
area since population estimations for the current decade are missing. Therefore, further
investigations on Ophidiomyces and population size are urgently needed to understand
potential mechanisms of host–pathogen interaction within Aesculapian snakes in San River
Valley. Understanding the historical prevalence and impact of O. ophidiicola is vital for
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the conservation and management of reptile populations, emphasising the importance of
continued surveillance and research on reptile pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12071467/s1, Figure S1: Representative Zamenis
longissimus moults considered with gross signs consistent with O. ophidiicola infection (brownish
crusts, dysecdysis). A: Sample ID 66. B: Sample ID 142; Figure S2: Bio-Rad CFX Maestro software
showing the ITS2 and nad1 amplification curve (above) and melting curves and peaks (below) of the
samples considered positive for one (149: ITS2; 218: nad1) or both targets (228). Note the positive
controls. The qPCR run was performed with the same plate and cycling conditions; Figure S3: Graphs
showing species and months of shed collection, with O. ophidiicola detection outcomes. A: The
histogram showing the total number of Zamenis longissimus (grey bars) and Natrix natrix (green bars)
sheds collected during different months in the study period. Positive O. ophidiicola detections are
represented by darker shades. B: The bubble plot showing species and months of sheds collected.
Circle size is dependent on the sample number (see legend), with red circles representing positive
samples. This plot also includes sheds with unknown collection times; Figure S4: The distribution
of snake samples based on the presence of gross signs and molecular test results. The histogram
shows the number of samples (y-axis) categorised by the presence or absence of gross signs (x-axis).
Each category is further divided into positive (red) and negative (grey) test results for O. ophidiicola
presence; Table S1: Concentrations (ng/µL) of DNA extracted from each sample measured with
TECAN Spark® Multimode Microplate Reader. Extracted DNA in bold yielded positive results in
SYBR Green-based qPCR for ITS2, and underlined ones for nad1 (see Table S3). All samples were
exuviae except one marked with “*” (tissue from a road-killed specimen); Table S2: PCR types and
primers used in this study; Table S3: Sequences obtained from successful amplifications after End
RFU, melting curves/temperatures, or gel inspection. Primer sequences or their reverse complements
are not excised from the whole sequences and are highlighted in bold. The sequence underlined in the
ITS2 sequences corresponds to the probe marked with 6-carboxyfluorescein (FAM) and Black Hole
Quencher®-1 (BHQ-1) used during TaqMan qPCR (5′-(FAM)TCTCGCTCGAAGACCCGATCG(BHQ-
1)-3′—Bohuski et al. [68]); nucleotides within the probe highlighted in red are missing. Nucleotides
highlighted in pale blue are single-nucleotide polymorphisms (SNPs) differentiating lineages sensu
Origgi et al. [33] and, just for ITS2 region, Blanvillain et al. [41]. Nucleotides highlighted in green are
the additional ITS2 SNPs differentiating genotypes sensu Blanvillain et al. [41]; Table S4: Ophidiomyces
ophidiicola sequences used for the phylogenetic analysis. GenBank accession numbers or literature
references for the DNA regions utilised are provided. Pseudoamauroascus australiensis was used as
an outgroup; Table S5: Output of the BLAST alignment (view: pairwise with dots for identities) of
representative O. ophidiicola genotype sequences deposited in GenBank with 228 ITS2L sequence. O.
ophidiicola genotypes are differentiated according to Blanvillain et al., 2024 [41]; Table S6: Details of
the statistical analysis.
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