
Science of the Total Environment 912 (2024) 168717

Available online 25 November 2023
0048-9697/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Spatially explicit estimation of freshwater fish stock biomass with limited 
data: A case study of an endangered endemic fish on the Tibetan 
Plateau, China 

Kunyuan Wanghe a,*,1, Shahid Ahmad b,g,1, Xin Zhou e,1, Fei Tian a, Sijia Liu a, Bingzheng Zhou e, 
Ghulam Nabi c, Guojie Wang d, Kemao Li d, Shenglong Jian d, Huamin Jiang f, Shengxue Chen a, 
Yimeng Niu a, Muhammad Ismail Khan h, Kai Zhao a,* 

a Key Laboratory of Adaptation and Evolution of Plateau Biota, Laboratory of Plateau Fish Evolutionary and Functional Genomics, Qinghai Key Laboratory of Animal 
Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China 
b School of Ecology and Environment, Hainan University, Haikou, China 
c Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland 
d Qinghai Provincial Fishery Technology Extension Center, Xining, China 
e Qinghai University, Xining, China 
f The Rescues Center of Qinghai-Lake Naked Carp, Xining, China 
g Wildlife and Ecosystem Research Lab, Department of Zoology, University of Chitral, Khyber Pakhtunkhwa, Pakistan 
h Department of Zoology, Islamia College, Peshawar, Pakistan   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We introduce integrated modeling to 
estimate fish biomass using limited data. 

• We estimated Herzensteinia micro-
cephalus biomass and spatial traits in a 
case study. 

• The validation results showed high ac-
curacy between observed and simulated 
values. 

• Our method offers key insights for 
effective fishery and conservation 
management.  
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enhancement efforts. However, this remains challenging owing to limited data availability. Therefore, we present 
an integrated modeling framework combining catch per unit effort with ensemble species distribution modeling 
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endemic fish on the Tibet Plateau, China 
(Original data)  
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fish species with limited data, applied to Herzensteinia microcephalus. The core algorithm incorporates the Leslie 
regression model, ensemble species distribution modeling, and exploratory spatial interpolation techniques. We 
found that H. microcephalus biomass in the Yangtze River source area yielded an initial estimate of 113.52 tons. 
Our validation results demonstrate high accuracy with a Cohen's kappa coefficient of 0.78 and root mean square 
error of 0.05. Furthermore, our spatially-explicit, global, absolute biomass density map effectively identified 
areas with high and low concentrations of biomass distribution centers. Additionally, this study offers access to 
the source code, example raw data, and a step-by-step instruction manual for other researchers using field data to 
explore the application of this model. Our findings can help inform for future conservation efforts around fish 
stock biomass estimation, especially for endangered species.   

1. Introduction 

Evaluating fish stock biomass is pivotal for effective conservation 
management and targeted species enhancement (Li et al., 2020; Radi-
nger et al., 2023). For example, national long-term fishing monitoring 
data from the Yangtze River showed the current fish stock biomass in the 
Yangtze Basin is approximately 124,800 tons, representing only 27.3 % 
of its historical peak in the 1950s (Huang and Li, 2016; Zhang et al., 
2020). These findings emphasize the urgent need to implement proac-
tive measures to safeguard our aquatic ecosystems and have promoted 
certain fishery management policies/projects (Zhang et al., 2023), such 
as the ten-year fishing moratorium in the Yangtze Basin effective as of 
January 1, 2020, issued by Ministry of Agricultural and Rural Affairs of 
China (Wang et al., 2022). 

The study area is the source of the Yangtze River, encompassing its 
headstream and three tributaries (the Tuotuo, Chumar, and Dam rivers) 
located in the northeastern part of the Tibetan Plateau, Qinghai Prov-
ince, China. Recent studies have reported that 69.0 % of the threatened 
and extinct fish species are endemic to the Yangtze Basin (Huang and Li, 
2016). Within this, the proportion of threatened fish species in the 
Yangtze Basin is 21.1 %, encompassing 107 endangered species. In 
contrast, the proportion of endangered fish species is as high as 50.0 % 
in the source region of the Yangtze (Liang et al., 2016). However, several 
studies (Chen et al., 2022; Kindong et al., 2020; Yue et al., 2021) have 
overlooked the assessment of fish stock biomass in the source region of 
the Yangtze. Owing to inherent natural and logistical limitations, cur-
rent methodologies have failed to provide sufficient support for accurate 
stock biomass estimation in this highland region. It is widely acknowl-
edged as a crucial region for conserving freshwater biodiversity in the 
Yangtze River Basin. However, accurately estimating the stock biomass 
of the freshwater fish in the study area remains a challenge. 

To date, fish stock biomass estimation has primarily relied on high- 
frequency fish-catching data (Mahadevan et al., 2019), environmental 
DNA (eDNA) (Doi et al., 2015), and acoustic fish stock assessment (Block 
et al., 2019). First, high-intensity invasive fishing violates the principles 
of conservation biology concerning endangered species, leading to 
physical damage or significant stress on individuals, thereby impacting 
their welfare and growth. Second, acoustic fish stock assessments usu-
ally require navigable waters, such as downstream rivers, lakes, and 
oceans. However, shipping an echosounder/sonar for fish stock biomass 
monitoring to upstream mountainous freshwater areas is impractical 
because of the steep riverbed gradients and poor navigation conditions. 
Third, Takahara et al. (2012) initially proposed the use of eDNA tech-
nology to assess fish stock biomass. This approach assumes a direct 
relationship between aquatic vertebrate biomass and the release of 
eDNA into the water at a specific rate (Li et al., 2020). Consequently, 
measuring eDNA concentrations only provides information on relative 
fish abundance rather than absolute biomass (Murakami et al., 2019). In 
conclusion, the limitations imposed by sampling conditions complicate 
the estimation of the stock biomass of freshwater fish. For example, all 
available records of Herzensteinia microcephalus consist of dozens of 
occurrence points scattered across the Tibetan Plateau (Zhu et al., 
2021), an endangered Cyprinid fish listed in the Red List of China's 
Vertebrates (Jiang et al., 2016). Therefore, it is imperative to develop a 

rapid and cost-effective approach for assessing the stock biomass of 
freshwater fish with limited data, especially for endangered fish species. 

Ensemble species distribution modeling (ESDM), which is based on 
machine-learning algorithms, offers a feasible solution to this issue 
(Ahmad et al., 2020). ESDM effectively models the global habitat suit-
ability with limited occurrence data based on non-intrusive fishing 
monitoring records (Tikhonov et al., 2020). Several studies (Hubert and 
Rahel, 1989; Kelly et al., 2015; Stewart et al., 2005) have used ESDM, 
confirming a positive correlation between the biomass/abundance and 
habitat suitability of aquatic organisms; therefore, habitat suitability 
output by ESDM robustly represents global relative biomass. Addition-
ally, the catch per unit effort (CPUE) is a commonly used measure of 
abundance to support fishery management (Říha et al., 2023). CPUE 
data have demonstrated a robust correlation with fish stock biomass 
(Emmrich et al., 2012), enabling the estimation of the local absolute 
biomass within a closed system through repeated sampling over 
consecutive short time intervals (Arreguín-Sánchez, 1996; Leslie and 
Davis, 1939). These two approaches combined then establishing a 
bridge between the global relative biomass and local absolute biomass. 

Therefore, this study presents a novel integrated modeling frame-
work, namely, combining catch per unit effort with ensemble species 
distribution modeling (CPUESDM), to estimate the stock biomass of 
freshwater fish species cost-effectively and spatially explicitly with 
limited data. We share the source code and example input data as a case 
study focusing on H. microcephalus, an endangered freshwater fish spe-
cies endemic to the Tibetan Plateau. 

Several endangered and endemic fish species, including Acipenser 
dabryanus, Hucho bleekeri, and H. microcephalus, are fish stocking2 in the 
Yangtze River Basin. However, despite the existence of fish stock 
biomass estimation data, based on fishery catch records, since the 1950s 
across various sections of the Yangtze River Basin (Huang and Li, 2016; 
Zhang et al., 2020), fish stock biomass in our specific study area has not 
previously been estimated because of limited access to fishery catch 
information (Fig. 2) (Dong et al., 2023). Therefore, here, we present a 
case study estimating the biomass of H. microcephalus to support the fish 
stocking and contribute to the ten-year fishing moratorium in the 
Yangtze Basin. In summary, this study aimed 1) to propose an integrated 
modeling framework named CPUESDM for accurately estimating the 
freshwater fish stock biomass with limited data, and 2) to identify and 
calibrate the stock biomass and spatial distribution priority of 
H. microcephalus. 

2. Materials and methods 

2.1. Aim, development, and usage of CPUESDM 

This study introduces a novel modeling framework, CPUESDM, 
aimed at the spatially explicit estimation and validation of the stock 
biomass of freshwater fish with limited data. The required inputs 
included species occurrence points (Table S2 in Supplementary material 

2 The term fish stocking is the practice of releasing fish that are artificially 
raised into a natural body of water, to supplement existing wild populations. 
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1) and CPUE data (Table S4 and Fig. S3 in Supplementary material 1). 
The CPUESDM script (available in the Section of Data availability) was 
developed using Python 3.9.16 on ArcGIS Pro (Esri, Redlands, Califor-
nia, USA). A comprehensive step-by-step instruction manual is provided 
in the Supplementary material 2 outlining the replication of CPUESDM 
using user fieldwork data. By adapting the input and corresponding 
parameters in the script to their specific datasets, users can readily es-
timate the stock biomass of other freshwater fish species. Alternatively, 
if users lack expertise in scripting Python code, they may utilize the 
built-in toolbox within the ArcGIS Pro software to conduct these ana-
lyses, as outlined in the step-by-step instruction manual. 

2.2. Modeling framework of CPUESDM 

CPUESDM is an integrated model, combining the CPUE and ESDM 
approaches (Fig. 1), based on a core algorithm that includes the Leslie 
regression model (Leslie and Davis, 1939) (Sections 2.4 and 2.5), ESDM 
(Ahmad et al., 2020) (Section 2.6), and exploratory spatial interpolation 
techniques (Section 2.8) (Alam et al., 2016; Yin et al., 2022). These two 
steps were conducted independently; thus, the CPUESDM employed a 
generalized linear model to cross-check and cross-calibrate the two in-
dependent calculations (Section 2.7). Subsequently, the calibrated local 
absolute biomass was translated into the global absolute biomass using 
the optimal solution from the 20 spatial interpolation methods (Section 
2.8). Finally, map algebra was used to extract the total biomass of the 
designated water region (Section 2.9). By integrating these commonly 
used individual models for estimating aquatic organism biomass and 
their spatial patterns, CPUESDM ensures robustness in the modeling 
process while leveraging their combined strengths to improve overall 
modeling performance. 

2.3. Study area 

The study area, located in the northeastern part of the Tibetan 
Plateau, Qinghai Province, China, covers an area of 157,718 km2, with 
elevations ranging from 3399 to 6350 m, and serves as the source of the 
Yangtze River Basin (Fig. 2). The Yangtze River is the longest river in 

Eurasia and the third longest river worldwide. The Yangtze River orig-
inates from within the study area, along with its headwaters and several 
tributaries. Our previous study (Feng et al., 2023; Tang et al., 2019; Zhao 
et al., 2009) indicated that because of convergent evolutionary processes 
and Pleistocene glaciation events, a distinct biogeographic pattern has 
emerged among the Cypriniformes fishes inhabiting this study area. 
Notably (Table S1 in Supplementary material 1), 45.0 % of the fish 
species are endemic to the Yangtze Basin, whereas 50.0 % are classified 
as threatened according to either the International Union for Conser-
vation of Nature Red List or the Red List of China's Vertebrates (Jiang 
et al., 2016). 

2.4. Fieldwork sampling and CPUE data capture 

The CPUE data were collected through fieldwork sampling con-
ducted between 2021 and 2022 using two parallel-set gillnets and four 
fish cages for fish catching. A schematic diagram of this sampling 
method is shown in Fig. S1, Supplementary material 1. The deployment 
of the two parallel-set gillnets created a closed waterway that effectively 
isolated the fish population within the sampling site. The area of this 
closed waterway was measured using a laser distance meter. The 
captured fish biomass was recorded by repeated sampling (fourfold) of 
this closed population over short sequential time intervals (4 h). In brief, 
approximately 0.5 g of tail fin was collected from each captured spec-
imen and preserved in a 95 % alcohol solution, after which the captured 
fish were released into the outer region of the enclosed waterway. 
Voucher specimens were deposited in the Natural Museum of the 
Northwest Institute of Plateau Biology, Chinese Academy of Sciences. 

2.5. Estimating the local absolute biomass through CPUE data and the 
Leslie regression model 

The Leslie regression model (Leslie and Davis, 1939) is commonly 
employed to estimate the stock biomass of aquatic organisms through 
removal. The assumptions of the model are as follows (Yüksel et al., 
2013): 1) the population must be closed, and 2) the CPUE data are 
collected through repeated samplings in this closed population over 

Fig. 1. Modeling framework of CPUESDM. CPUE: Catch per unit effort; ESDM: Ensemble species distribution modeling.  
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consecutive short time intervals, ensuring that the catchability of the 
targeted fish remains constant (i.e., equal amounts of effort are expen-
ded) during each sampling period. Additionally, fertility and mortality 
are negligible during these short sampling periods. The fieldwork sam-
pling method outlined in Section 2.4 satisfies these assumptions. 

The Leslie regression model is a removal method that involves 
sequential sampling of the target population, similar to the mark- 
recapture and maximum-likelihood methods. In each sampling period, 
the number of captured fish is recorded and temporarily removed from 
the population, resulting in a decrease in catch (i.e., CPUE) during 
subsequent sampling periods. The decline rate of CPUE provides a 
quantifiable measure of the proportion of the initial population biomass 
(Hayes et al., 2007). Although the Leslie regression model has more 
stringent assumptions than approaches like the maximum likelihood 
model or the mark-recapture method (Cowx, 1983), CPUESDM focuses 
on fish stock biomass assessment with limited data, where rigorous as-
sumptions can minimize negative impacts from sampling. Therefore, we 
selected the Leslie regression model as the fundamental algorithm for 
CPUESDM. 

The mathematic interpretations are as follows: 
CPUEt is defined as the ratio of the catch (Ct) to effort (ft) over time 

t− 1 to t (Eq. (1)). Under the assumptions listed above, the catchability 
(q) is constant because the efforts of each catch during time interval t are 
identical. Therefore, CPUEt also represents the instantaneous catch 
biomass at time t, which is proportional to population size (Nt) and 
catchability (q) (Eq. (1)). 

CPUEt =
Ct

ft
= qNt (1) 

Subsequently, the original population size without catching is rep-
resented by N0 (i.e., t = 0), and Kt is defined as the cumulative catch from 
time 0 to the start of time t. Thus, the population size at time t (Nt) is the 
difference between N0 and Kt (Eq. (2)). 

Nt = N0 − Kt (2) 

Therefore, substituting Eq. (2) for Nt in Eq. (2) gives you Eq. (3), or 
the Leslie Regression Model, 

CPUEt =
Ct

ft
= qN0 − qKt (3)  

where catchability (q) is constant, CPUEt and N0 are linearly correlated. 
This linear regression equation can be determined utilizing the least- 
squares method, where the slope = − q, and the Y-axis intercept =
qN0. The local absolute biomass (original population size, N0) can be 
estimated from this regression line using Eq. (4). 

N0 =
qN0

q
= −

Y axis intercept
slope

= X axis intercept (4) 

As t approaches a sufficiently large value in Eq. (3), such that CPUEt 
tends to zero, the X-axis intercept represents N0 = Kt. The parameters of 
the Y-axis intercept (qN0) and the slope (− q) can be calculated using the 
least-squares method. Alternatively, CPUESDM enables the splitting of 
input CPUE data into training and testing datasets. Subsequently, a 
cross-validation analysis was conducted between the training and 
testing datasets to evaluate the model accuracy. This alternative 
approach is recommended when t > 20. 

After determining N0, the local absolute population density of species 
j at sampling site i (Dlocalij) was calculated as the quotient of N0ij and the 
area of the closed population si (Eq. (5)). If the Dlocalij values at all 
sampling sites conformed to a normal distribution by Shapiro-Wilk test, 
the influence of seasonal variations in fish distribution on the outcomes 
could be disregarded. 

Dlocalij =
N0ij

si
(5) 

The case study retained 15 groups (i.e., i ranging from 1 to 15) of the 
CPUE data with a coefficient of determination r2 > 0.8 for further 
analysis (Guo et al., 2022). This modeling process was carried out using 
Python codes scripted using the Scikit-learn package v1.3.0 (a machine 
learning package in Python) (Abraham et al., 2014) and the geometry 
token functions of the ArcPy site package (v3.1) (Zandbergen, 2020). 
Section 3.1 of Supplementary material 2 describes the modeling pro-
cesses of this step. 

Fig. 2. Topographic map displaying the location of the study area in the Yangtze Basin. The fish biomass in 2020 in the Yangtze and its tributaries and lakes (data 
from Dong et al., 2023) is marked by boxes in yellow. 
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2.6. Estimating global relative biomass by ESDM 

The ESDM method estimates the global relative biomass (Hglobalij) 
using limited species occurrence data and the corresponding abiotic/ 
environmental data as input. The Hglobalij indicator ranges from zero to 
one, with zero representing the minimum suitable habitat and one 
indicating the most suitable habitat. In this case study, the ESDM 
comprised 106 occurrence points (Table S2 in Supplementary material 
1) obtained from official fishery department records and our long-term 
fieldwork monitoring conducted between 2005 and 2022. The occur-
rence data were thinned using the spThin package with a thinning 
parameter of 10 km to mitigate potential spatial autocorrelation. After 
thinning, 105 occurrence points remained for further analysis. Subse-
quently, climate and elevation data [Shuttle Radar Topography Mission 
(SRTM)] were downloaded from WorldClim (WorldClim.org). Flow 
accumulation, direction, and Strahler stream orders were derived from 
the SRTM elevation layer using ArcGIS Pro. All layers were clipped ac-
cording to the boundaries of the study area (Fig. 2). Next, a multi- 
collinearity test was performed on all variables, and those with a Pear-
son's coefficient > 0.75 were removed to avoid collinearity of variables 
(Fig. S2 in Supplementary material 1). Only flow accumulation, flow 
direction, Strahler stream order, bio2, bio11, bio13, and bio14 were 
used in the modeling process. Ten robust or machine learning algorithms 
were utilized, including the generalized linear model, generalized 
boosted model, generalized additive model, classification tree analysis, 
multivariate adaptive regression spline, artificial neural network, sur-
face range envelope, flexible discriminant analysis, random forest, and 
maximum entropy algorithms. One thousand randomly generated 
pseudo-absence locations were used. Furthermore, we split the dataset 
into two 3:7 ratios for model calibration and validation. Receiver 
operating characteristic (ROC) curve analysis was used to evaluate the 
models, and a threshold ROC >0.7 was required for models to be 
included in the ensemble model (Ahmad et al., 2020). This modeling 
process was implemented using the Biomod2 R package (Thuiller et al., 
2013), and the source codes are presented in Section 3.2 of Supple-
mentary material 2. 

2.7. Cross-checking and cross-calibration 

A generalized linear model was employed to cross-check and cross- 
calibrate the independent calculations. Hglobal is a simulated value, 
while Dlocal represents the observed value. After obtaining Cohen's 
kappa coefficient between the max-min normalized simulated and 
observed values, the consistency between the simulated and observed 
values were used to validate model accuracy according to the following 
scale: 0–0.20, extremely weak consistency; 0.21–0.40, weak consis-
tency; 0.41–0.60, moderate consistency; 0.61–0.80, good consistency; 
0.81–1.00, extremely good consistency (Rigby, 2000). Additionally, the 
predicted values of the generalized linear model from the cross- 
calibration between Dlocalij and Hglobalij represent the calibrated local 
absolute density (Dlocal_calibrationij), thereby mitigating the impact of 
limited data on the results. 

The source codes, as viewed in Section 3.3 of Supplementary mate-
rial 2. The generalized linear regression was carried out using the “stats” 
class of the ArcPy site package (Zandbergen, 2020). 

2.8. Exploratory spatial interpolation 

The spatial interpolation method is commonly used to identify 
spatiotemporal patterns of fishery resources (Alam et al., 2016; Yin 
et al., 2022), which produces a range of interpolation outcomes based on 
the input point features and a field (i.e., Dlocal_calibrationij), which are 
subsequently evaluated and ranked using a customizable criterion 
grounded in cross-validation statistics. CPUESDM employs 20 custom-
ized spatial interpolation methods to identify the method with the 
highest prediction accuracy. The list of these 20 spatial interpolation 

methods and their descriptions and parameters are listed in Table S3 of 
Supplementary material 1. This exploratory spatial interpolation process 
was conducted using a Python script, as interpreted in Section 3.3 of 
Supplementary material 2. The exploratory interpolation and geo-
statistical layer to raster and contour functions in the Geostatistical 
Analyst class of the ArcPy site package (Zandbergen, 2020) were 
employed to implement this analysis. 

2.9. Extracting global absolute biomass 

Step 2.8 translates the calibrated local absolute density (Dlocal_cali-
brationij) to the global absolute density (Dglobalij). As aquatic areas 
spatially restrict the distribution of fish biomass, the output of step 2.8 (i. 
e., Dglobalij) was extracted from the focused aquatic areas in the study 
region (Eq. (6)), resulting in the biomass density in the aquatic areas of 
species j at cell i (Dglobal_waterij). Finally, the total biomass of species j 
was equal to the sum of biomass density Dglobal_waterij multiplied by the 
cell area (Eq. (7)). A map-algebra algorithm was used to complete the 
calculation. The Python source codes are explained in Section 3.3 of 
Supplementary material 2. 

Dglobal waterij = Dglobalij ×
Swateri

CellSize2 (6)  

Bglobal waterjtotal =
∑

i=0
Dglobal waterij ×CellSize2 (7) 

In Eq. (6) Dglobal_waterij represents the biomass density in the 
aquatic areas of species j in cell i. Swateri represents the aquatic area of 
cell i. In Eq. (7), Bglobal_waterjtotal is the total biomass in the study area of 
species j. 

The parameter cell size is related to the simulation accuracy; here the 
cell size in Eq. (6) is the raster size of the Dglobalij, which is determined 
by the modeling environment. The cell size in Eq. (7) is a contrast 
determined by user input, i.e., the contrast cell size used here was 100 m. 

2.10. Sensitivity analysis 

Reducing the parameter cell size leads to increased accuracy but also 
exponentially increases the processing time of the computer. Therefore, 
a sensitivity analysis was conducted to test the sensitivity of Bglo-
bal_waterjtotal to increasing cell size. By performing 991-fold repetitions 
of Step 2.9 while varying the parameter cell size to an integer from 10 to 
1000 with a for-loop structure, a single-sample t-test was performed to 
compare different cell size ranges and to determine an optimal value 
that balances the processing time and acceptable accuracy. 

3. Results 

3.1. Local absolute biomass density (Dlocal) 

CPUESDM script 01 (Section 3.1 of Supplementary material 2) em-
ploys the Leslie regression model (Section 2.3) to estimate local absolute 
biomass density (Dlocal in (Eq. (5)). The input consists of a point .shp file 
representing the sample site locations, original CPUE data (CPUEt in Eqs. 
(1) and (3)), and closed population area (s in m2 in (Eq. (5)). The output 
(Table S4 of Supplementary material 1) includes the cumulative catch 
from time 0 to the beginning of t (Kt in Eq. (2)), the initial population 
size without any fishing activity in this closed population (N0 in Eq. (4)), 
the coefficient of determination (r2) between CPUEt and Kt through 
least-squares analysis, the mean standardized error, and Dlocal. 

In the case study, 15 groups of CPUE data with a coefficient of 
determination (r2) >0.8 were selected for further analysis (Fig. S3 of 
Supplementary material 1). The Dlocal ranged from 0.051 to 0.221 g/ 
m2, with a mean value of 0.173 g/m2 and a standard deviation (STD) of 
0.052 (n = 15). According to the Shapiro-Wilk test, the 15 Dlocal data 
points did not conform to a normal distribution (W = 0.789, p = 0.003), 
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which suggests that the effect of seasonal variability on fish distribution 
may have led to an overestimation. As all CPUE data were collected 
during the summer, the target species likely migrated exclusively from 
downstream areas to the sampling sites for spawning and breeding 
purposes during this period. Consequently, the findings solely reflect 
biomass levels during the breeding season within the study area. If 
Dlocalij values at all sampling sites followed a normal distribution 
pattern, the influence of seasonal variations on fish distribution would 
have been disregarded. 

3.2. Global relative biomass density (Hglobal) 

The CPUESDM script 02 (Section 3.2 of Supplementary material 2) 
utilizes 10 robust or machine-learning ESDM algorithms (Section 2.6) 
derived from the Biomod2 R package (Thuiller et al., 2013) to estimate 
the global relative biomass density. The input consists of species 
occurrence points (Table S2 of Supplementary material 1) and corre-
sponding environmental variables (Fig. S2 of Supplementary material 
1). The output is a raster file representing the global habitat suitability 
within the study area, Hglobal values, as detailed in Section 2.6. 

3.2.1. Model performance 
The ESDM results demonstrated satisfactory internal evaluation on 

average (Table 1), with the sensitivity and specificity meeting the per-
formance requirements of the model. The calibration accuracy was 
determined to be 88.0 % via cross-validation with a 3:7 test-to-training 
data ratio. These findings indicate that the model exhibits acceptable 
accuracy and reliability. 

3.2.2. Global relative biomass density and its spatial distribution 
characteristics 

The global relative biomass density map (Fig. 3b) comprised 8902 
cells within the aquatic area (mean = 0.31, STD = 0.300, cell size = 1 
km2). The middle reaches of the study area exhibited relatively high 
habitat suitability. The results obtained from the hot spot analysis 
(Getis-Ord Gi analysis) (Getis and Ord, 1992), as shown in Fig. 4, indi-
cated that areas with high Hglobal values were concentrated midstream 
of the study area, including in certain adjacent tributaries, such as the 
Dam and Lema rivers (hot point with confidence coefficient = 99 % in 
Fig. 4). Furthermore, the Hglobal values displayed a negative correlation 
with both human footprint and altitude and a positive correlation with 
the profile curvature of the river (Fig. 5), suggesting that 
H. microcephalus prefers habitats characterized by rapidly flowing water 
at lower altitudes while actively avoiding areas with high levels of 
human activity. 

3.3. Model validation 

The initial stage of CPUESDM script 03 (Section 3.3 of Supplemen-
tary material 2) involved the application of a generalized linear model to 
perform cross-checking and cross-calibration between Hglobal and Dlo-
cal (points in Fig. 4 and Table 2), as described in Section 2.7. The results 
from the cross-check indicated a Cohen's kappa coefficient of 0.78, 
demonstrating strong agreement between the max-min normalized 
simulated and observed values. Additionally, the cross-calibration 
analysis revealed residuals ranging from − 0.004 to 0.006 g/m2 be-
tween the Dlocal and Dlocal_calibration values. By employing this 
generalized linear model, we derived a calibrated local biomass density, 
denoted as Dlocal_calibration, which was further utilized to improve the 

accuracy of the results when working with limited data. 

3.4. Global absolute biomass density (Dglobal) 

The subsequent phase of CPUESDM script 03 (Section 3.3 of Sup-
plementary material 2) implements an exploratory spatial interpolation 
function to convert the localized point values (i.e., Dlocal_calibration) 
into global polygon values (i.e., Dglobal), as discussed in Section 2.8. 
Finally, CPUESDM script 04 (Section 3.4 of Supplementary material 2) 
extracts the Dglobal values for the designated aquatic region following 
the guidelines outlined in Section 2.9. 

The results of the case study (Table S5 of Supplementary material 1) 
demonstrate that, of the 20 exploratory spatial interpolation methods, 
the simple kriging method with default parameters exhibited superior 
performance, verified by having the lowest root mean square error 
(RMSE). A smaller RMSE value indicates higher accuracy, typically 
below 0.50, for a robust modeling performance. Our case study revealed 
exceptional model accuracy using a simple kriging method with default 
parameters, yielding an RMSE of 0.05. Consequently, we selected this 
result (Fig. 6a) for further analysis. 

The exploratory spatial interpolation generated the Dglobal value 
raster map, as illustrated in Fig. 6a. Overall, the distribution of Dglobal 
areas exhibited a concentration in the middle reaches of the study area 
(Fig. 6a) and at altitudes ranging from 4300 to 5100 m (Fig. 6b). The 
total fish biomass (Bglobal_waterjtotal in Eq. (7)) in the Tuotuo, Yangtze, 
Chumar, and Dam rivers was calculated to be 113.52 tons (mean =
0.192 g/m2) (Table 3). Locally, a cold center and a hot center were 
identified (Fig. 6a). 

3.4.1. Zonal statistics by Dglobal cold and hot centers 
The Dglobal cold center (Fig. 6a) was located at point 10 in Fig. 3b 

and its surrounding areas, where both Dlocal (0.051 g/m2) and Hglobal 
values (0.23) exhibited relatively minor magnitudes across the study 
area (Table 2). Fig. 6c illustrates the representative braided river fish 
habitat within the cold center, characterized by a network of multiple 
shallow channels that bifurcate and converge. In this particular region, 
the stream gradient (average profile curvature = 0 %, n = 58,054, STD 
= 0.000263) exhibits a comparatively milder nature than in the up-
stream gorge areas, leading to a reduction in water velocity and 
consequent augmented deposition of sediment. The presence of a bridge 
spanning the Chumar River (Fig. 6d), accompanied by adjacent petro-
leum pipelines, partially isolates fish habitats. Consequently, consid-
ering these factors collectively, the cold center was identified as a 
priority area for implementing diverse measures to restore habitats, such 
as eco-shoreline development, fish passage facilities, and artificial fish 
nests. 

Comparatively, the Dglobal hot center (Fig. 6a) was identified at 
points 2, 3, 5, 6, 8, and 9 in Fig. 3b, along with their respective buffer 
zones. The weighted average value of Dlocal (weighted by s) was 
determined to be equal to 0.214 g/m2, and the Hglobal values were 
recorded as an average of 0.95 (Table 2). Fig. 6e depicts a representative 
river valley fish habitat situated within the hot center, characterized by 
a higher stream gradient (average profile curvature = − 0.061 %; n =
1,680,025; STD =0.000783), deeper channels without bifurcation, and 
more rapid water velocity than those of the cold center. Although these 
aquatic areas cover only 12.76 % of the total water surface area (403.29 
km2) among the Yangtze River sources, they play a crucial role in sup-
porting a significant fish biomass of 14.85 tons accounting for 13.08 % 
of the total biomass (113.52 tons) (Table 3). Consequently, it is imper-
ative to recognize hot centers as core habitats for conservation purposes 
and accordingly prioritize fish stocking efforts. This approach was 
designed to minimize the adverse effects of human activities on riparian 
zones and water quality while mitigating potential disruptions caused by 
dams or other structures that impede the longitudinal connectivity of 
rivers. 

Table 1 
Model performance of ten ensemble species distribution modeling for the case 
study.  

Metric Algorithm Cutoff Sensitivity Specificity Calibration 

ROC Mean 363.50 95.65 76.61 0.88  
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3.5. Sensitivity analysis 

The parameter cell size for the map algebra calculation (Section 2.9) 
is determined subjectively using user input. Smaller cell sizes are asso-
ciated with higher accuracy; however, the computational processing 
time increases exponentially as cell size decreases. Therefore, it is 
essential to explore an appropriate cell size for model testing through a 
sensitivity analysis. Fig. 7 and Table 4 illustrate the sensitivity analysis 
of 991 iterations between cell size (m) and total biomass (Bglobal_wa-
tertotal, tons). The results indicated that when 10 m ≤ cell size ≤100 m, 
an STD of 0.120 was observed with a significant p-value; however, for 
cell sizes ranging from 100 to 1000 m, the STD increased to 2.123, with a 
p-value that was statistically insignificant. These results suggest that the 
selected cell size of the case study of 100 m is justifiable. The computer 
processing time for this case study using a Mac Pro 2019 graphic 
workstation (Apple Inc., Cupertino, California, USA) with standard 
configuration was measured to be approximately 243 s when employing 
a cell size of 100 m. However, when utilizing a smaller cell size of 10 m, 
there was a significant increase in the processing time to approximately 
1.53 h. Consequently, it could be inferred that opting for a cell size of l00 
m aids in achieving an optimal balance between processing efficiency 
and accuracy in our analysis. 

4. Discussion 

4.1. Comparison between different methods 

The methods commonly used for the stock biomass estimation of 
aquatic organisms can be categorized into four groups (Table 5): 
capture-based methods (Hayes et al., 2007), eDNA analysis (Doi et al., 
2015), acoustic monitoring (Block et al., 2019), and removal techniques 
(Hayes et al., 2007). Table 5 lists illustrative examples and compre-
hensive descriptions of these methods. Although capture-based methods 
are extensively utilized, they rely heavily on high-frequency fish catch 
data, rendering them more suitable for commercial fisheries than for 
conservation efforts targeting endangered wild fish populations. 
Conversely, while eDNA analysis offers a non-intrusive approach, the 
uncertainty surrounding the correlation between eDNA concentration 
and organism biomass poses challenges in translating relative biomass 
into absolute values (Li et al., 2020). Furthermore, the implementation 
of acoustic monitoring using echo-sounders or sonar requires navigable 
water or fixed echo-sounding platforms, potentially limiting its practi-
cality in certain highland freshwater regions. 

Therefore, CPUESDM utilizes the Leslie regression model (Leslie and 
Davis, 1939) as a crucial step to capture relative biomass using CPUE 
data and subsequently convert it into absolute biomass using the least- 
squares method. This case study also demonstrated a strong agree-
ment between the results obtained from Leslie's method and the ESDM 
(Cohen's kappa coefficient = 0.78, Section 3.3). Furthermore, compared 
to Leslie regression methods, the maximum-likelihood method offers 

Fig. 3. (a) Image of the targeted species Herzensteinia microcephalus, sampled at point 13 in panel b, captured by the authors. (b) Global relative biomass density 
(Hglobal) and local absolute biomass density (Dlocal). The points represent the CPUE sampling sites, and their ID corresponds to those in Fig. S3, Table S4, 
and Table 2. 
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Fig. 4. Hotspots (red) and cold spots (blue) of global relative biomass density.  

Fig. 5. Pearson correlation matrix among the global relative biomass density (Hglobal), profile curvature of the river (curve rate), human footprint, and altitude. 
Green refers to a positive correlation, while red represents a negative correlation. 
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significant advantages, as it enables testing of assumptions related to 
removal methods and the creation of models that accommodate a more 
relaxed set of assumptions (Hayes et al., 2007). However, to successfully 
implement the maximum-likelihood method, a minimum of 20 instances 
of sampling over short sequential time intervals (t > 20 in Eqs. (1), (2), 
and (3)) are required, as suggested by Abraham et al. (2014). However, 
our fieldwork (Section 2.4 and Table S4) revealed that four instances of 
short sequential time interval sampling were adequate to fulfill the 
rigorous assumptions required by the Leslie regression model (Section 
2.5). Compared to the maximum-likelihood method, which can be 
negatively affected by limited data, the Leslie regression model is more 
suitable for minimizing such effects when working with endangered 
species. 

4.2. Comparison of waters adjacent to the study area 

Our results indicate that the stock biomass of H. microcephalus in the 
source of Yangtze was estimated to be 113.52 tons (Table 3). Based on 
our unpublished extensive fieldwork data collected from 2005 to 2022, 
H. microcephalus accounted for approximately 37.81 % of the relative 
importance index of all species in the study area. Consequently, we 
estimated a total fish stock biomass of approximately 300.24 tons by 
dividing 113.52 tons by 37.81 %. This finding aligned with adjacent 
waters within our study area, where it reported that total fish stock 
biomasses were recorded as 400.74 tons for Jinsha River and 520.98 
tons for the upper reaches of Yangtze (Fig. 2) (data from Dong et al., 
2023). Therefore, this comparison validates the reasonableness and 
comparability of the case study results. 

4.3. Conservation implications of H. microcephalus 

Notably, the fish stock biomass data presented in Fig. 2 were assessed 
using a CPUE method based on extensive historical catch records before 
implementing the “Ten-Year Fishing Moratorium in the Yangtze Basin” 
conservation project. This project prohibited commercial fishing activ-
ities in key waters along the Yangtze River, resulting in a lack of avail-
able catch records. Therefore, our findings serve as baseline data to 
assess the effectiveness of protection measures following the completion 
of this conservation project. Meanwhile, we suggest a wider adoption of 
the CPUESDM method to compensate for the limited fish catch data 
during this ongoing conservation project. For example, identifying 
H. microcephalus biomass hotspots provides valuable information for 
prioritizing conservation efforts and targeted species stocking. 
Furthermore, the identification of biomass cold spots (Fig. 6a) indicates 

potential habitat fragmentation resulting from human activities, neces-
sitating appropriate habitat restoration measures. 

4.4. Innovations, limitations, and future study 

The innovations of CPUESDM include:  

1) By utilizing only CPUE data (Table S4 of Supplementary material 1) 
and a limited number of occurrence points (Table S2 of Supple-
mentary material 1), the adverse effects of extensive sampling on 
endangered fish populations can be minimized. Additionally, this 
approach is particularly suitable for mountainous freshwater habi-
tats lacking navigable conditions. Even in cases where CPUE data are 
not readily available, alternative methods, such as experimental 
eDNA data or acoustic monitoring data, can serve as viable 
substitutes. 

2) The modeling processes of the CPUE (Section 2.5) and ESDM (Sec-
tion 2.6) are conducted independently, enabling cross-checking to 
verify the accuracy of the CPUESDM simulation results (Section 2.7).  

3) The final output is a raster map that explicitly depicts the spatial 
distribution of the fish stock biomass in each cell (Fig. 6a). In contrast 
with other models that solely provide global aggregate outcomes, 
this model more accurately portrays the spatial heterogeneity of fish 
stock biomass, as exemplified by the presence of hot and cold centers 
in Fig. 6a. 

After hundreds of modeling tests, the currently known limitations to 
the method used here are as follows: First, compared with that of other 
methods (listed in Table 5) that utilize additional input sampling data, 
CPUESDM may exhibit relatively lower accuracy. However, CPUESDM 
focuses on limited data concerning freshwater fish species. Second, the 
assumptions required by the Leslie regression model are stringent 
(Section 2.5) but can be met using specific sampling methods, such as 
those used in this study. Finally, relying solely on CPUE data might 
overlook the influence of weather and seasonal variability on fish dis-
tribution. For example, our case study exclusively reflects biomass levels 
during the breeding season but potentially overestimates the average 
annual level. 

In future studies, we will employ the CPUESDM model to elucidate 
the potential acceleration of niche divergence among sympatric fish 
species on the Tibetan Plateau (Jia et al., 2020), a phenomenon that is 
potentially leading to a substantial reduction in habitat availability for 
H. microcephalus. Furthermore, we will continuously refine and enhance 
the methodology based on valuable user feedback. 

5. Conclusions 

In this study, we introduced CPUESDM, an innovative model 
framework designed to enable spatially explicit estimation and valida-
tion techniques for assessing the stock biomass of freshwater fish species 
using limited data and applied it to a case study on H. microcephalus, an 
endangered endemic fish in the Yangtze River Basin. A detailed step-by- 
step instruction manual is provided in the Supplementary material to 
facilitate users in replicating CPUESDM using their self-fieldwork data. 
Overall, the findings of novel combined approach offer pivotal insights 
for effective conservation management, identifying priority areas for 
conservation, and selecting suitable locations for targeted fish stocking 
across fish systems. 
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Table 2 
Local absolute biomass density (Dlocal) and its calibration value by the gener-
alized linear model (Dlocal_calibration), global relative biomass density (Hglo-
bal), the residual between Dlocal and Dlocal_calibration, and the standardized 
residuals (STD Residual).  

ID Dlocal (g/ 
m2) 

Hglobal Dlocal_calibration (g/ 
m2) 

Residual (g/ 
m2) 

STD 
residual  

1  0.170  0.76  0.171  0.000  − 0.098  
2  0.208  0.91  0.204  0.004  1.433  
3  0.189  0.86  0.193  − 0.004  − 1.190  
4  0.167  0.76  0.170  − 0.003  − 1.124  
5  0.208  0.94  0.210  − 0.001  − 0.382  
6  0.221  0.98  0.220  0.002  0.585  
7  0.092  0.41  0.091  0.000  0.159  
8  0.204  0.93  0.207  − 0.003  − 0.963  
9  0.218  0.97  0.218  0.001  0.183  
10  0.051  0.23  0.051  0.000  − 0.047  
11  0.188  0.83  0.186  0.002  0.550  
12  0.203  0.93  0.208  − 0.004  − 1.432  
13  0.207  0.90  0.200  0.006  2.090  
14  0.177  0.79  0.177  0.000  − 0.008  
15  0.092  0.41  0.091  0.001  0.244  
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Fig. 6. (a) Global absolute biomass density (Dglobal, g/m2) raster map. The red circle is the hot center with a Dglobal value >0.196 g/m2, whereas the blue circle is 
the cold center with a Dglobal value <0.186 g/m2. (b) Relationship between the accumulated Dglobal and altitude. (c) Representative braided river fish habitat in the 
cold center. (d) Fish habitat affected by human construction in the cold center, where the Chumar River is isolated by a bridge of the G215 national highway and the 
adjacent petroleum pipelines. (e) Typical river valley fish habitat in the hot center. 

Table 3 
Aquatic area (km2), sum biomass of H. microcephalus (Bglobal_waterjtotal, ton), and global absolute biomass density (Dglobal_water, g/m2) in the designated aquatic 
regiona of the hot and cold centers.  

Type Aquatic area Area% Bglobal_waterjtotal Bglobal_waterjtotal% Dglobal_water 

Cold  14.82  3.68 %  4.11  3.62 %  0.185 
Hot  51.46  12.76 %  14.85  13.08 %  0.197 
Others  337.01  83.56 %  94.56  83.30 %  0.191 
Sum  403.29a  100.00 %  113.52  100.00 %  0.192a  

a Note: The designated water region for statistical analysis encompasses the Tuotuo, Yangtze, Chumar, and Dam rivers (Fig. 6a), with a combined area of 403.29 km2. 
The average global absolute biomass density weighted by aquatic area was 0.192 g/m2. 
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