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Szarek-Gwiazda, E.; Walusiak, E.;

Kosiba, J.; Krztoń, W.
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Abstract: Global warming and eutrophication are the main factors driving the development of
cyanobacterial dominance in aquatic ecosystems. We used a model linking water temperature,
oxygen saturation, concentrations of PO4

3−, NO3
−, NH4

+, total dissolved iron (TDFe), and SO4
2−

to cyanobacteria to test the turnover patterns of cyanobacterial dominance of non-nitrogen-fixing
(chroococcal species) and nitrogen-fixing (filamentous diazotrophic) species. Statistical analysis was
performed using decision trees. The dominance patterns of the two morphologically and ecologically
distinct cyanobacterial species were associated with different environmental factors. However, SO4

2−

was the most important factor that explained whether non-nitrogen-fixing or nitrogen-fixing species
would dominate. Other important factors were water temperature, phosphate concentration, and
oxygen saturation. The model for dominance of non-nitrogen-fixing species used SO4

2−, PO4
3−,

and water temperature (upper layers), and SO4
2−, the ratio of PO4

3−/NH4
+, and oxygen saturation

(bottom layers). In contrast, water temperature, SO4
2−, and NH4

+ in the upper layers and SO4
2−,

NH4
+, and water temperature in the bottom layers were used for the dominance of nitrogen-fixing

species. The dominance of Aphanizomenon flos-aquae was explained by different sets of variables,
indicating the presence of different strains of this species. The other cyanobacteria species showed
dominance patterns that could be explained by one set of variables. As cyanobacterial blooms
proliferate due to climate change, it is important to know which factors, in addition to phosphorus
and nitrogen, are crucial for the mass development of the various cyanobacterial species.

Keywords: blooms; ecology; decision tree; filamentous species; sulphate

1. Introduction

Global warming and eutrophication are well-established as factors promoting the
development of cyanobacterial blooms and dominance [1–4]. The development of mas-
sive amounts of cyanobacteria leads to a decrease in water transparency, resulting in
an increase in pH [5], and to the accumulation of large amounts of organic matter, the
degradation of which leads to a significant depletion of the oxygen concentration in an
aquatic environment [6], with lethal effects on other groups such as zooplankton, fish,
and macroinvertebrates [5,7]. In addition, many cyanobacterial species produce toxins
and release them into the water, making them unsuitable for drinking and recreational
use. Blooms cause economic damage by affecting tourism, agriculture [8], and aqua-
culture industries [9]. However, cyanobacterial blooms are not an ecological endpoint,
but rather an intermediary [10]; they cause changes in biodiversity and functionality
of other communities [11,12], but also respond to changes in aquatic ecosystems. All
these negative feedbacks make the spread and intensification of cyanobacterial blooms
a problem that is increasing worldwide [3]. The most common planktonic freshwa-
ter cyanobacterial species blooms worldwide include species of the genera Microcystis,
Aphanizomenon, and Dolichospermum [13–15]. Microcystis species are colonial and produce

Int. J. Environ. Res. Public Health 2022, 19, 15980. https://doi.org/10.3390/ijerph192315980 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph192315980
https://doi.org/10.3390/ijerph192315980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-4929-6733
https://orcid.org/0000-0003-2224-2599
https://doi.org/10.3390/ijerph192315980
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph192315980?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 15980 2 of 12

hepatotoxins (microcystins; [14]). Some of them, such as Microcystis aeruginosa, are also
capable of producing a wide range of other secondary metabolites, e.g., nonribosomal
peptides, cyanobactins, and microviridins, which also have the potential to disrupt aquatic
ecosystems [16]. In contrast, the widely distributed filamentous diazotrophic freshwa-
ter cyanobacterial species Aphanizomenon flos-aquae and Dolichospermum spp. are capable
of producing cylindrospermopsin and anatoxin-a (Aphanizomenon flos-aquae), and micro-
cystins (Dolichospermum spp.; [14]). Filamentous genera are also the most abundant pro-
ducers of taste and odour compounds in surface waters and cause a greater nuisance than
Microcystis blooms [17]. In eutrophic waters, both chroococcal and diazotrophic filamentous
cyanobacteria cause water blooms. However, due to their different morphology, physiology,
and ecology, their adaptation to environmental conditions is different. As cyanobacterial
blooms proliferate due to climate change, it is important to know what factors, in addition
to phosphorus and nitrogen, are critical for the mass development of the various cyanobac-
terial species. Different species of cyanobacteria produce different types of toxins that affect
other organisms and the aquatic food web in different ways, it is important to know which
conditions favour the development of certain species.

Cyanobacterial growth is controlled by biotic and abiotic factors. The main macronutri-
ents for which cyanobacteria compete are phosphorus (P) and nitrogen (N) [18]. However,
some researchers extend the interaction to the N:P ratio [19,20] and also to iron and sul-
phate concentration [21,22]. Molot et al. [23] published a hypothetical model that related
anoxia and the concentration of P, N, Fe2+, and sulphate to the formation of cyanobac-
terial blooms and formulated a hypothesis based on a hypothetical decision tree. The
hypothesis determined the outcome of competition between eukaryotic phytoplankton and
cyanobacteria, but did not consider the role of Fe2+ in competition between cyanobacteria,
although they found that diazotrophic species have higher iron (Fe) requirements. Here, we
examined field data on cyanobacterial dominance of chroococcales, Microcystis ichthyoblabe
(G. Kunze) Kützing and Woronichinia naegeliana Unger (Elenkin), in comparison to filamen-
tous diazotrophic heterocystous cyanobacteria, Aphanizomenon flos-aquae Ralfs ex Bornet
and Flahault and Dolichospermum planctonicum (Brunnthaler) Wacklin, L. Hoffmann and
Komárek. We hypothesised that the dominance of chroococcal or diazotrophic heterocy-
tous cyanobacteria species was driven by: concentrations of PO4

3−, NO3
−, NH4

+, total
dissolved iron (TDFe) and SO4

2− concentrations, oxygen saturation and water temperature,
but as different models. The aim of our studies was to explain the outcome of chroococcal
or diazotrophic cyanobacteria domination.

2. Materials and Methods

Samples were collected from May to October in four shallow, eutrophic waters (max
depth of 4 m; Table 1) in southern Poland (near Kraków, Table 1). In the months when
cyanobacterial blooms did not occur, samples were collected once a month and every week
after the beginning of the bloom. Because the development and dominance of cyanobacteria
is a consequence of factors present in the upper layer and factors and processes occurring
in the bottom layer, we collected samples, for determination of physical and chemical
parameters, from the upper (1 m) and from the bottom water layer (approximately 10 cm
above bottom sediments). A total of 62 samples were collected for physical, chemical,
and biological analyses. Water temperature, oxygen saturation and chlorophyll a were
measured in situ using a YSI 6600 V2 multiparameter probe. Samples for ion analysis
(SO4

2−, NO3
−, PO4

3−, NH4
+) were taken immediately to the laboratory. Ion concentrations

were measured using a Dionex ion chromatograph (DIONEX, IC25 ion chromatograph;
ICS-1000, Sunnyvale, CA, USA) in the laboratory of the Institute of Nature Conservation,
Polish Academy of Sciences. Water samples for total dissolved iron (TDFe) analysis were
filtered through a syringe filters with a pore size of 0.45 µm into a polyethylene container.
The filtered solution was acidified to pH 2 with ultrapure HNO3. The concentrations of
dissolved Fe were measured using the atomic absorption spectrophotometric AAS method
on a Varian spectrophotometer (Spectr AA-20). Following [24], we used TDFe as a proxy
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Fe2+ since Fe2+ is very difficult to measure in the field. Samples for cyanobacteria analysis
were collected from 1 m depth using a 5 L Ruttner sampler and concentrated from 10 L
using a plankton net (mesh size 10 µm). Immediately after collection, samples were fixed
with Lugol’s solution for quantitative analyses. Additional fresh (non-fixed) samples were
concentrated as described above, and live material was collected for qualitative analysis
(species composition), which was performed immediately in the laboratory under the light
microscope. Cyanobacterial species were identified and counted in a modified chamber
(0.4 mm high, 22 mm diameter). We used the keys [25–27] to identify the cyanobacteria
species. The biomass of cyanobacteria was calculated based on cell numbers and spe-
cific geometric figures [28]. A NikonH550 L light microscope at 40–1000× was used for
the analyses.

Trophic state index (TSI) was calculated based on chlorophyll a concentration: TSI
(CHL, µg L−1) = 10 × [6 − (2.04 − 0.68 ln (CHL-a))/ln2] [29].

Table 1. Basic information on water bodies. Mean TSI values calculated for chlorophyll a. Thresholds
for TSI according to [30]: oligotrophy < 40, mesotrophy 40–50, eutrophy 50–70, hypertrophic > 70.

Type of
Reservoir

Geographical
Coordinates Supply by River Max Depth

[m]
Surface

[ha] TSI Index Dominated Cyanobacteria

Piekary Oxbow lake 50◦00′50.1′ ′ N,
19◦47′35.7′ ′ E Vistula 4 1.6 64.7 eutrophy Dolichospermum spp.

Tyniec Oxbow lake 50◦01′47′ ′ N,
19◦49′39.8′ ′ E Vistula 3 5.75 66.1 eutrophy Microcystis ichthyoblabe

and Woronichinia naegeliana

Podkamycze 1 Artificial pond 50◦05′11′ ′ N,
19◦50′01.6′ ′ E Rudawa 3 16.82 57.8 eutrophy Aphanizomenon flos-aqaue

Podkamycze 2 Artificial pond 50◦04′59.6′ ′ N,
19◦50′05.4′ ′ E Rudawa 2 17.28 65.1 eutrophy Aphanizomenon flos-aqaue

Statistical Analyses

Differences in water temperature and oxygen saturation between water layers were
tested using generalized linear models (GLMs) with a categorical predictor. The significance
level was set at p < 0.05. To determine which factors control cyanobacterial development
and dominance, we used decision trees (package ‘rpart’). This method is commonly used to
test a categorical dependent variable with categorical and numerical variables. Moreover,
the results obtained from the analysis are easy to interpret. Each of the nodes of the final
tree has a set of values of the predictors used, which determine the exact conditions that
promoted the specific category of the dependent variable. Finally, the decision tree approach
does not require any additional assumptions, making the method applicable in numerous
domains. The depth of each decision tree was manually determined to avoid overfitting
the prediction. Data were analyzed using the statistical software R and R Studio [31].

3. Results

The physico-chemical parameters of the studied waters are shown in Table 2.
Despite the fact that all waters were relatively shallow, we found that oxygen satura-

tion was significantly higher in the upper water layers than in the bottom layers (p = 0.0185,
GLM). Water temperatures in the upper layers were also higher than those in the bot-
tom layers, although the analysis showed a result (GLM) on the border of significance
(p = 0.0636).

Cyanobacteria were present in all studied waters and dominated the phytoplankton commu-
nity in summer and fall. Among nitrogen-fixing (filamentous diazotrophic) species, the most abun-
dant with the highest biomass was Aphanizomenon flos-aquae and Dolichospermum planctonicum;
among non-nitrogen-fixing (chroococcales) species, Microcystis ichthyoblabe and Woronichinia naegeliana
were the most abundant.
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Table 2. Physico-chemical parameters of waters of the upper and lower layers of the oxbow lakes
Piekary (P) and Tyniec (T) and the ponds Podkamycze 1 (P1) and Podkamycze 2 (P2).

Parameter Layer

Water Body

P T P1 P2 P T P1 P2 P T P1 P2

Min–Max Average SD

Water temperature [◦C] Upper 8.7–24.3 9.3–24.7 7.2–23.4 8.4–25.6 17.4 17.8 17.4 18.9 4.7 4.6 4.2 4.3
Lower 8.6–17.2 9.3–23.2 7.0–19.4 8.4–24.1 13.8 16.0 16.1 18.2 2.6 3.9 3.4 4.0

Oxygen saturation [%] Upper 53.1–100.8 41.0–169.6 88.5–214.7 11.8–236.6 74.4 88.3 141.6 133.1 17.6 37.8 34.1 49.1
Lower 2.6–53.3 2.2–61.2 30.3–182.1 16.4–226.2 30.7 27.4 113.4 123.5 17.2 19.5 36.5 49.2

pH Upper 6.4–8.3 6.8–8.3 7.2–8.9 7.4–8.6 7.2 7.4 7.9 8.0 0.5 0.5 0.4 0.3
Lower 5.5–7.5 6.4–7.7 7.5–8.6 7.6–8.5 6.5 7.0 8.0 8.0 0.6 0.4 0.3 0.3

NO3
− [mg/L] Upper 0.18–1.03 nd-1.05 6.53–12.11 0.67–5.62 0.39 0.53 9.37 2.96 0.24 0.24 1.63 1.64

Lower 0.14–3.50 nd-4.08 7.57–13.65 0.85–6.05 0.56 0.74 10.72 3.04 0.98 1.03 1.24 1.76

NH4
+ [mg/L] Upper 0.03–0.56 0.03–0.78 0.02–0.56 0.02–0.56 0.18 0.22 0.14 0.15 0.16 0.22 0.15 0.17

Lower 0.11–1.96 0.06–1.21 0.02–0.43 0.01–0.48 0.58 0.28 0.12 0.12 0.55 0.31 0.11 0.14

PO4
3− [mg/L]

Upper 0–0.189 0–0.490 0–0.538 0.021–
0.432 0.059 0.147 0.184 0.098 0.054 0.159 0.167 0.095

Lower 0–0.171 0–0.517 0–0.573 0–0.432 0.060 0.117 0.230 0.082 0.048 0.146 0.172 0.103

SO4
2− [mg/L]

Upper 21.2–78.1 75.9–100.1 50.5–58.9 50.1–62.9 36.7 84.7 54.9 55.6 14.5 6.4 2.4 4.1
Lower 17.7–63.2 79.3–91.8 52.3–58.0 50.1–66.7 33.3 84.8 54.4 55.2 11.0 3.9 1.7 4.5

Fe dissolved [µg/L] Upper 5.6–101.0 3.4–160.0 0.8–48.0 1.2–45.0 29.3 55.5 21.8 22.1 25.9 50.0 13.3 13.5
Lower 4.7–159.0 1.9–204.4 1.6–66.0 3.0–55.0 40.0 49.2 23.5 24.9 41.8 53.3 17.2 15.0

Cyanobacterial biomass [mg/L] 0–0.354 0–12.830 0.11–5.61 0.06–9.23 0.11 4.65 1.33 2.15 0.12 3.77 1.41 3.10

3.1. Upper Layer-Decision Tree

Factors examined in the upper layers explained why 74% of the samples had a domi-
nant cyanobacterial species and 26% of the samples did not have a dominant cyanobacterial
species (Figure 1). Non-nitrogen-fixing (chroococcales) species of cyanobacteria dominated
17% of the samples; 10% of the samples were dominated by M. ichthyoblabe and 7% of the
samples were dominated by W. naegeliana. Nitrogen-fixing (filamentous, diazotrophic)
species dominated 57% of the samples; 49% were dominated by A. flos-aquae and 8% by
D. planctonicum.

The most important factor that distinguished the dominance of non-nitrogen-fixing
(chroococcales) from the dominance of nitrogen-fixing (filamentous diazotrophic) cyanobac-
teria in the upper layers was the sulphate concentration (Figure 1). When the SO4

2− con-
centration was higher than 69 mg/L, the non-nitrogen-fixing cyanobacteria dominated.
When the PO4

3− concentration was higher than 0.029 mg/L and the water temperature
was above 16 ◦C, M. ichthyoblabe dominated (10% of the samples). However, when the
PO4

3− concentration was higher than 0.029 mg/L and the water temperature was below
16 ◦C, W. naegeliana dominated (7% of samples).

The circumstances for the dominance of nitrogen-fixing species were more complex.
All samples dominated by A. flos-aquae and D. planctonicum were found at SO4

2− concentra-
tions less than 69 mg/L. However, A. flos-aquae dominated when SO4

2− concentration was
between 69 and 39 mg/L and the water temperature was above 16 ◦C (44% of samples).
When the water temperature was above 16 ◦C but SO4

2− concentration was below 39 mg/L,
D. planctonicum dominated (8% of the samples).

We also found that the samples were dominated by A. flos-aquae (5%) when the SO4
2−

concentration was below 41 mg/L, the water temperature was below 16 ◦C, and the
NH4

+ concentration was below 0.11 mg/L. We found that the PO4
3−:NH4

+ ratio and
dissolved iron (TDFe) and NH4

+ concentrations were less important for the dominance of
cyanobacteria in the upper layers (description of Figure 1).
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Figure 1. Decision tree of factors explaining the dominance of cyanobacterial species—upper layer.
Small grey boxes—no dominant cyanobacteria; blue and green boxes—dominance of filamentous
diazotrophic cyanobacteria (A. flos-aquae, D. planctonicum); red and orange boxes—dominance
of Chroococcales (M. ichthyoblabe, W. naegeliana). Abbreviations: SO4—SO4

2− [mg/L],
PO4—PO4

3− [mg/L], temp—water temperature ◦C], NH4—NH4
+ [mg/L]. The importance of

each factor was as follows: SO4
2− > water temperature > PO4

3− > PO4
3−:NH4

+ > total dissolved
Fe (TDFe) > NH4

+ (18.1 > 10.6 > 8.5 > 6.3 > 5.2 > 4.8; respectively).

3.2. Decision Tree- Near-Bottom Layer

The factors present in the bottom layers explained why 76% of the samples had a
dominant cyanobacterial species and 24% of the samples had no dominant cyanobacterial
species (Figure 2).

Overall, seventeen percent of the samples were dominated by chroococcal cyanobacte-
ria, and 59% of the samples were dominated by nitrogen-fixing species. In the bottom layers,
SO4

2− was also the main factor that distinguished the samples dominated by non-nitrogen-
fixing species from those dominated by nitrogen-fixing cyanobacteria. For Microcystis spp.
dominance, the most important factors were a SO4

2− concentration greater than 73 mg/L,
a PO4

3−:NH4
+ ratio greater than 0.051, and an oxygen saturation greater than 7.5%. These

conditions occurred in 12% of the samples. In the case of W. naegeliana, the factor that
distinguished the dominance of W. naegeliana from the dominance of M. ichthyoblabe was an
oxygen saturation of less than 7.5%.
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Figure 2. Decision tree of factors explaining the dominance of cyanobacterial species—bottom
layer. Grey boxes—no dominant cyanobacteria; blue and green boxes—dominance of filamen-
tous diazotrophic cyanobacteria (A. flos-aquae, D. planctonicum); red and orange boxes—dominance
of Chroococcales (M. ichthyoblabe, W. naegeliana). Abbreviations: SO4—SO4

2− [mg/L],
PO4:NH4PO4

3−:NH4
+ ratio, O2—oxygen saturation [%], temp—water temperature [◦C],

NH4—NH4
+ [mg/L]. The importance of each factor was as follows: SO4

2− > NH4
+ > PO4

3−:NH4
+ >

O2% > water temperature > PO4
3− > total dissolved Fe (TDFe; 18.3 > 9.6 > 9.1 > 8.6 > 3.9 > 3.8, respectively).

The dominance of nitrogen-fixing cyanobacteria was observed under conditions with
near-bottom SO4

2− concentrations of less than 73 mg/L. We found that 47% of samples
dominated by A. flos-aquae occurred at near-bottom conditions of SO4

2− concentration
between 53–73 mg/L. When the SO4

2− concentration was below 53 mg/L and the NH4
+

concentration was above 0.37 mg/L, D. planctonicum predominated (9% of the samples).
Three percent of the samples were dominated by A. flos-aquae when SO4

2− concentration
was below 53 mg/L, NH4

+ concentration was between 0.18–0.37 mg/L, and the water
temperature was above 14 ◦C. We found that PO4

3− and total dissolved iron (TDFe) were
less important factors (description of Figure 2).

4. Discussion

Two morphologically and ecologically distinct species of cyanobacteria, non-nitrogen-
fixing (chroococcales) and nitrogen-fixing (filamentous diazotrophs), dominated the phy-
toplankton in four shallow small waters. The dominance patterns of each species were
associated with various environmental factors. However, the decision trees showed that
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SO4
2−, in both the upper and bottom layers, was the most important factor explaining

whether non-nitrogen-fixing (chroococcales) or nitrogen-fixing (diazotrophs) species domi-
nated. This finding suggests that sulphate concentration in water should be considered
when preparing the management of cyanobacterial dominance and blooms. In the upper
and bottom layers, sulphate separated the non-nitrogen fixers from the nitrogen fixers.
Higher SO4

2− concentrations were associated with non-nitrogen-fixing species (17% of
samples) and lower SO4

2− was associated with nitrogen-fixing species (57% of samples).
The effect of sulphate concentration on cyanobacterial dominance can be explained in
several ways. Sulphate is an important inhibitor of molybdate uptake in natural waters,
and molybdenum (Mo) is one of the essential cofactors for the vast majority of known
N2 fixation systems and many nitrate reductases [21]. Some authors point out that SO4

2−

concentrations, which are typically 4–6 times higher than molybdate concentrations, can
inhibit molybdate uptake [21]. The Mo demand depends on what form of nitrogen is used
by the specimen. For example, molybdenum (Mo) demand is the highest when organisms
fix N2, lower (but still present) when organisms are supplied with NO3

−, and negligible
when organisms are supplied with NH4

+ [32]. The low availability of Mo caused by a
high concentration of SO4

2− in oxic waters may limit the activity of planktonic N2-fixing
organisms [21]. At high concentrations of SO4

2− in water, nitrogen fixation may be difficult
or even impossible. In nitrogen-fixing species such as A. flos-aquae, inhibition of Mo would
block nitrogen fixation, while in Microcystis, inhibition of Mo should not cause problems
for nitrogen uptake [33]. However, there are some studies showing that nitrogen-fixing
cyanobacteria were not limited by Mo in a group of eutrophic saline lakes with high
sulphate/Mo ratios [34], so the above explanation may be questionable.

Sulphates can also limit N2 fixation [35]. A high SO4
2− concentration favours the

development of certain species, i.e., either those that take up nitrogen or those that fix
nitrogen. Our results show that a lower sulphate concentration favours the dominance
of diazotrophic species and a higher sulphate concentration favours the dominance of
chroococcal type cyanobacteria. Although filamentous diazotrophic cyanobacteria are
able to fix N2 [19], we cannot ignore that both types of cyanobacteria, chroococcales and
diazotrophs, are able to use NO3

−, NH4
+ and urea as nitrogen sources [33]. Because we did

not measure nutrient uptake or nitrogen fixation rates, the discussion of our results remains
partially hypothetical, but the idea is worth developing in the future. It is also worth devel-
oping field studies that focus on the presence/absence and abundance (ratio of heterocytes
to vegetative cells) of heterocytes as a function of sulphate concentration and different
types of nitrogen sources. Other important factors separating the different cyanobacterial
species were water temperature, phosphate concentration, ammonia nitrogen, and oxy-
gen saturation. Phosphate concentration was important for the dominance of non-fixers
(chroococcales). For example, the abundance of Microcystis was shown to be phospho-
rus responsive and required a large amount of phosphorus that could be rapidly taken
up [33,36]. It has also been demonstrated that the genus Microcystis has a lower tolerance
to phosphorus (P) stress than two other filamentous species, Aphanizomenon flos-aquae and
Oscillatoria planctonica [37], and that the biomass of Microcystis is affected by phosphorus
concentration [38]. In our studies, Microcystis dominated in samples with high PO4

3− and
SO4

2− concentrations. The source of phosphates in the studied waters could also be internal
loading. The presence of weakly reducing conditions promotes the release of phosphates
from the redox-sensitive iron-bound P fraction in the sediment into the overlying water.
This phenomenon is influenced by redox potential values below 200 mV, which are typical
of dissolved oxygen content 2–4 dm−3 in the bottom water [39]. The iron-bound P fraction
can contain up to 78% of the total P content in the sediment [40,41]. SO4

2− has an important
function in controlling the release of Fe2+ and PO4

3− from sediments during anoxia [42].
Sulphate reduction limits Fe2+ availability through the formation of iron sulphide, which is
consistent with the Fe2+ availability hypothesis [23]. Such a process could have occurred in
the oxbow lakes of Tyniec and Piekary at a low oxygen saturation of bottom waters.
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Two species of dominant chroococcal cyanobacteria have been observed: Microcystis sp.
and Woronichinia naegeliana. The factor that distinguished the spread of Microcystis from that
of Woronichinia in the upper layers was water temperature, while the factor in the bottom
layers was oxygen saturation. Woronichinia preferred temperatures lower than 16 ◦C and
tolerated oxygen saturation lower than 7.5%. The preference for low temperatures fits the
phenomenon of the autumnal bloom of W. naegeliana in deep submontane reservoirs [43].
The ability of W. naegeliana to tolerate low oxygen saturation has also been noted in sev-
eral lakes [44]. This characteristic could be useful for nutrient uptake. Under reducing
conditions in the water-sediment system of the studied waters, NH4

+ may be released
from sediments as a result of organic matter decay. In addition, under anoxic conditions,
biological nitrification in the bottom layers is lost [45]. Anoxic release rates of ammonia
for eutrophic sites have been found to exceed 15 mg Nm−2 day−1. It has also been found
that anoxic conditions in eutrophic lakes can promote the co-occurrence of phosphorus
and ammonia [45]. Under anoxic conditions, fluxes of the biologically available nutrients
soluble reactive phosphate (SRP) and ammonium nitrogen from internal releases can ex-
ceed those from external sources [46]. Under such conditions, anoxia-tolerant W. naegeliana
can utilise phosphorus (P) and nitrogen (N) released from sediments more rapidly than
other species that do not tolerate anoxia. Previous studies have found a significant negative
correlation between W. naegeliana and nitrate nitrogen [47], suggesting that this species
takes up ammonia nitrogen.

The dominance of nitrogen-fixing cyanobacteria was identified as somewhat more com-
plex compared to non-nitrogen-fixing species. Besides the main factor SO4

2− mentioned
above, the second most important parameter in the upper layers was a water temperature
higher than 16 ◦C. Experiments with cultures have shown that water temperature is crucial
for the growth of A. flos-aquae and that growth does not occur at a temperature of 11 ◦C
or below [48]. Wu et al. [49] showed that A. flos-aquae grew at different temperatures (10,
15, 20, and 25 ◦C) but preferred higher temperatures (about 20–25 ◦C). However, later [36]
observed that A. flos-aquae grew rapidly and forms blooms at a water temperature of about
15 ◦C. All these observations indicate that a water temperature of about 15 ◦C is important
for the development and dominance of A. flos-aquae. Temperature affects the formation and
abundance of heterocysts in both Dolichospermum and Aphanizomenon [50] and is important
for phosphorus and ammonia concentrations. Experimental studies conducted at 16 ◦C
have shown that phosphorus can be released from sediments under aerobic and anaerobic
conditions, and the processes were more intense under anaerobic conditions [51]. Therefore,
the threshold of 16 ◦C for A. flos-aquae and D. planctonicum could be related to the release of
phosphorus or to the ammonia concentration, which was significant in the 5% of samples
dominated by A. flos-aquae. The ammonia concentration was lower than 0.11 mg/L; how-
ever, this concentration was sufficient. Ammonia and nitrate nitrogen are important for
diazotrophic cyanobacteria because both can suppress nitrogenase [52,53]. Diazotrophic
cyanobacteria often preferentially take up ammonia when it is available because it is much
more energetically favourable than fixing nitrogen [52]. The type of nitrogen source is
related to the availability of phosphorus and the N:P ratio [52].

In the model [23], the limitation of cyanobacterial growth by iron was demonstrated.
It is known that iron (Fe2+) regulates the efficiency of macronutrient use by cyanobacteria,
as it plays a critical role in the uptake of nitrogen (N) and phosphorus (P) [23,54]. Since Fe2+

is very difficult to measure in the field, we used total dissolved Fe (TDFe) as a proxy of Fe2+

in anoxic waters [22,24]. Although all the studied waters are shallow, we found statistically
significant differences between the upper and bottom layers, indicating weaker oxygenation
of bottom waters. Poor oxygenation and high total dissolved iron (TDFe) concentration
in bottom waters, especially in two water bodies (Piekary, Tyniec), indicated the release
of Fe2+ from sediment and its possible bioavailability to cyanobacteria. However, in our
studies, total dissolved Fe concentration showed little significance and was not responsible
for differentiating the dominance of cyanobacterial species.
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We also found that the phosphate/ammonia nitrogen ratio in soil samples differenti-
ated between dominance of chroococcal species and a lack of dominance of cyanobacteria.
A high ratio of PO4

3− to NH4
+ favoured Microcystis or Woronichinia dominance (17% of

samples overall), while a lower ratio favoured samples (only 5%) without cyanobacterial
dominance. We hypothesise that this is related to the high phosphate requirements of
the chroococcal species. Another interesting finding of our study was a small number of
samples dominated by A. flos-aquae (3% of samples) that were favoured by other factors
than the majority of Aphanizomenon samples (47% of samples). This may be due to our
assumption that different strains of A. flos-aquae were present in these samples. In most
waters, each bloom-forming genus actually includes multiple strains or subspecies [17] and
it has been noted that the responses of Aphanizomenon and Dolichospermum to environmental
conditions exhibit lake-specific patterns [38]. We suggest that the pattern we observed
is due to the rate of evolution of cyanobacteria. Chroococcales are a more conservative
species, and their speciation and evolution are much slower than that of the filamentous
A. flos-aquae. This could be supported by the fact that chroococcal species appeared before
filamentous species in evolution. Presumably, the first cyanobacteria were unicellular,
coccoid, or had short-rod morphologies. Filamentous morphologies with the ability to fix
nitrogen evolved independently several times thereafter [55].

The results of our studies are important for preventing cyanobacterial dominance.
Although various methods of remediation of water bodies have been proposed to avoid
the harmful consequences of cyanobacterial development [56,57], prevention is much more
effective than any remedy. Therefore, knowledge of the factors that favour the develop-
ment of certain cyanobacterial species could be useful in preventing the development of
particularly dangerous species.

5. Conclusions

The results of our field study on the dominance patterns of cyanobacteria showed
that SO4

2− in the upper and bottom layers was the most important factor explaining the
dominance of non-nitrogen-fixing or of nitrogen-fixing species. A lower sulphate concen-
tration favoured the dominance of nitrogen-fixing species, while a higher concentration
favoured the dominance of non-nitrogen-fixing species. Sulphates could be a factor that
blocks nitrogen fixation and then causes the decline of nitrogen-fixing species when they do
not take up other nitrogen sources. Sulphate does not affect nitrogen uptake and causes an
increase in non-nitrogen-fixing species. Sulphate appears to be the primary factor in turning
on or off the dominance of various cyanobacterial species. In addition, the dominance
patterns of the two morphologically and ecologically distinct cyanobacterial species were
associated with various environmental factors such as phosphate, ammonium nitrogen,
water temperature, oxygen saturation, and phosphate/ammonium nitrogen ratio.
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56. Dunalska, J.A.; Grochowska, J.; Wiśniewski, G.; Napiórkowska-Krzebietke, A. Can we restore badly degraded urban lakes? Ecol.

Eng. 2015, 82, 432–441. [CrossRef]
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