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Impacts of detritivore diversity loss on instream
decomposition are greatest in the tropics
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The relationship between detritivore diversity and decomposition can provide information on

how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has

come mostly from local studies and microcosm experiments. We conducted a globally dis-

tributed experiment (38 streams across 23 countries in 6 continents) using standardised

methods to test the hypothesis that detritivore diversity enhances litter decomposition in

streams, to establish the role of other characteristics of detritivore assemblages (abundance,

biomass and body size), and to determine how patterns vary across realms, biomes and

climates. We observed a positive relationship between diversity and decomposition, stron-

gest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our

results suggest that litter decomposition might be altered by detritivore extinctions, parti-

cularly in tropical areas, where detritivore diversity is already relatively low and some

environmental stressors particularly prevalent.
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A key question in contemporary ecology is whether changes in
biodiversity lead to alterations in the functioning of ecosys-
tems and associated biogeochemical cycles1,2. Interest in this

topic emerged in the 1990s, motivated in part by the remarkable
increase in global biodiversity loss3, and led to hundreds of experi-
ments that manipulated biodiversity at different levels (species, genes
or functional traits) in different groups of terrestrial and aquatic
organisms, to examine possible effects on ecosystem processes4,5.
While this large body of primary research and subsequent syntheses
have demonstrated a strong, positive role of diversity of primary
producers on biomass production6–8, the patterns for decomposition
have proven to be weaker and less consistent6,9. This contrast may
occur because decomposition can be simultaneously affected by the
diversities of plant litter, microbial decomposers and animal con-
sumers, with consequently more complex relationships10.

Plant litter decomposition is a key process in the biosphere, as
90% of the annual plant production escapes herbivory11 and
eventually becomes litter, which is ultimately decomposed or
sequestered in terrestrial or aquatic ecosystems10. Streams play a
particularly important role in receiving and processing litter from
their catchments12, contributing significantly to global carbon
and nutrient fluxes13–15. Litter enters streams mainly in the form
of leaves, and it is decomposed by microorganisms (mostly
aquatic hyphomycetes) and specialised invertebrates (litter-con-
suming detritivores) that can obtain carbon and nutrients from
the litter and associated fungi16,17.

Multiple studies have manipulated detritivore diversity and
assessed its effect on decomposition locally in streams or in labora-
tory microcosms, with inconsistent results10. These inconsistencies
have been attributed to the existence of different species interactions
driving either positive18,19 or negative effects20,21, which can com-
pensate for each other and sometimes result in overall neutral
effects22. However, there has been no global assessment of the rela-
tionship between detritivore diversity and decomposition in streams,
which would help account for local and regional environmental
contingencies in the diversity–decomposition relationship23. A meta-
analysis of terrestrial and aquatic studies revealed strong effects of

detritivore diversity on decomposition, but there was no separate
assessment of instream decomposition9. Several stream studies have
suggested a direct link between faster decomposition24 and greater
detritivore diversity25,26 in temperate streams, but did not explore the
relationship explicitly. A large-scale study demonstrated that
decomposition in streams was enhanced when detritivore assem-
blages were more complex (large- and medium-sized organisms as
opposed to medium-sized only), although it did not examine detri-
tivore diversity27.

Here, we describe results from a global-scale decomposition
experiment conducted by partners of the GLoBE collaborative
research network (www.globenetwork.es) in 38 streams distributed
across 23 countries in all inhabited continents. We use a standar-
dised design and methodology to examine global-scale ecological
questions, which reduces the number of confounding factors that
need to be statistically controlled for in a meta-analysis28,29. Our
main working hypothesis is that detritivore diversity has a major
positive effect on decomposition9, although we also expect an
influence of other detritivore assemblage characteristics such as
abundance, biomass, and body size18,22,27. Moreover, we predict
that biotic drivers of decomposition vary across sites at different
latitudes, possibly because of the varying interplay between positive
and negative species interactions22. We also explore detritivore
variation across latitudes, biogeographic realms, biomes and cli-
mates, to further explain their global distribution and the potential
consequences of reduced diversity for decomposition in different
areas of the world. Unlike previous large-scale decomposition stu-
dies using 1 or 2 litter types24,30, we use several mixtures repre-
senting a variety of litter traits to maximise the generality of our
results. Our global experiment supports the expected positive rela-
tionship between detritivore diversity and decomposition, and
reveals that detritivore species loss may have its greatest con-
sequences on stream ecosystem functioning in the tropics.

Results
The model that best explained global variation in total decom-
position explained 73% of the variation and revealed a significant
influence of detritivore diversity, abundance, biomass, latitude,
and interactions between diversity and latitude, abundance and
latitude, and biomass and latitude (Table 1 and Supplementary
Table 1). The model that best explained global variation in
detritivore-mediated decomposition explained 82% of variation in
the data, and showed that the interactions between diversity and
latitude, abundance and latitude, and biomass and latitude were
significant (Table 1 and Supplementary Table 1). As these results
indicated that the three detritivore variables were important
predictors of decomposition, but their influence varied with
latitude, we explored the interactions with a second type of model
where latitude was a categorical variable (Supplementary Table 2).
These models revealed that the relationship between detritivore
diversity and decomposition was stronger in tropical areas than in
temperate areas and absent in boreal areas; and that abundance
and biomass were important in temperate and boreal areas, but
not in tropical areas (Fig. 1 and Supplementary Table 2).

All detritivore variables varied significantly among realms, biomes
and climates, and so did assemblage composition (Figs. 2–4, Table 2
and Supplementary Table 3). Diversity and abundance were highest
in the Palearctic realm, tundra and temperate broadleaf and con-
iferous forests, and warm temperate and snow climates; and lowest in
Neotropical, Afrotropical and Indomalayan realms, tropical wet
forests and savannas and xeric shrublands, and equatorial climates.
Biomass and mean body size were highest in Palearctic and Nearctic
realms, temperate broadleaf and coniferous forests, and again warm
temperate and snow climates, with the lowest values in the Indo-
malayan realm, tropical savannas and xeric shrublands, and

Table 1 Results of the best additive models explaining
variation in total and detritivore-mediated litter
decomposition based on detritivore diversity, abundance,
biomass, mean body size, latitude, and interactions between
detritivore variables and latitude.

Effect edf F p

Total decomposition
Diversity 4.00 6.94 <0.001
Abundance 3.14 6.34 <0.001
Biomass 1.00 2.00 0.159
Mean body size 1.86 2.10 0.102
Latitude 1.00 3.01 0.085
Diversity × latitude 14.56 6.17 <0.001
Abundance × latitude 1.00 8.67 0.004
Biomass × latitude 7.91 4.20 <0.001
Detritivore-mediated decomposition
Diversity 4.00 0.53 0.716
Abundance 1.05 0.01 0.912
Biomass 1.00 0.04 0.843
Mean body size 1.08 1.00 0.843
Latitude 1.71 0.27 0.763
Diversity × latitude 14.14 4.74 <0.001
Abundance × latitude 8.76 3.30 <0.001
Biomass × latitude 7.99 4.36 <0.001

All predictors were fitted as tensor product interaction smooths. We show effective degrees of
freedom (edf) and values of F and p for each factor. Models explained 69% and 78% of variation
in the data, respectively.
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Fig. 1 Generalised additive models exploring the influence of detritivore diversity, abundance and biomass on decomposition in different latitudinal
zones (tropical: ≤23°; temperate: 24–60°; and boreal: >60°). Variation in total and detritivore-mediated decomposition (measured as the proportion of
litter mass loss per degree day, dd; mean ± SE) with a detritivore diversity (number of families per litterbag), b log-transformed abundance (number of
individuals per litterbag) and c log-transformed biomass (mg per litterbag), in different latitudinal zones. Lines represent the smoothers and shading the
95% confidence intervals from generalised additive models for significant relationships (p-value < 0.05); whole-model results are given in Supplementary
Table 3.
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Fig. 2 Global distribution of study sites in different biogeographic realms (Pa, Palearctic; Na, Nearctic; Au, Australasian; Nt, Neotropical; At,
Afrotropical; Im, Indomalayan); n= 38. Box plots show the median, interquartile range and minimum-maximum range of litter-consuming detritivore
diversity (number of families per litterbag), abundance (number of individuals per litterbag), biomass (mg per litterbag) and mean body size (mm) in each
realm (ordered from highest to lowest diversity); different letters indicate significant differences. The NMDS ordination of litter-consuming detritivores
with realms is represented by polygons of different colours as in maps and box plots. Significant differences in assemblage structure were: Pa vs. Na, At,
Au, Im; Na vs. Nt, Au; Nt vs. Au.
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Fig. 3 Global distribution of study sites in different biomes (Tu, tundra; TeBF, temperate broadleaf forest; TeCF, temperate coniferous forest; MeF,
Mediterranean forest; XeS, xeric shrubland; TrWF, tropical wet forest; TrS, tropical savanna); n= 38. Box plots show the median, interquartile range
and minimum-maximum range of litter-consuming detritivore diversity (number of families per litterbag), abundance (number of individuals per litterbag),
biomass (mg per litterbag) and mean body size (mm) in each biome (ordered from highest to lowest diversity); different letters indicate significant
differences. The NMDS ordination of litter-consuming detritivores with biomes is represented by polygons of different colours as in maps and box plots.
Significant differences in assemblage structure were: TrWF vs. TeBF, TeCF, MeF.
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equatorial climates. Assemblage composition mostly differed between
the Palearctic/Nearctic (with many families of Laurasian origin) and
other realms (families of Gondwanan distribution); between tropical
wet forests and several other biomes; and between equatorial and
other climates.

Discussion
Our study demonstrates a positive influence of detritivore
diversity on decomposition, supporting previous suggestions that
latitudinal gradients in detritivore diversity and instream
decomposition are linked24,25 and agreeing with results of a
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meta-analysis of controlled experiments performed in terrestrial
and aquatic ecosystems9. Our result also agrees with results of
controlled experiments that found average increases in decom-
position of 12–30% per detritivore species added18,19,31, sug-
gesting that positive interactions (i.e. resource partitioning and
facilitation) are prevalent in detritivore assemblages. Clearly, our
field study does not demonstrate causality among these variables
or the suggested mechanisms, but the finding of a consistent
relationship across 113° of latitude indicates that detritivore
diversity, at least at the family level, is indeed a driver of
decomposition. Whether this relationship would change by
considering species diversity cannot be currently ascertained due
to limited taxonomic knowledge in many regions32.

The relationship between detritivore diversity and decom-
position, when data were grouped according to latitudinal zone,
was most evident in tropical areas, less important in temperate
areas and unimportant in boreal areas (although the latter
were underrepresented in our dataset). Others have demonstrated
a positive relationship between detritivore diversity and decom-
position in some streams of boreal areas33, but our global dataset
indicates a relatively weak relationship when compared to other

latitudinal zones. Importantly, the stronger relationship between
detritivore diversity and decomposition in the tropics suggests
that species losses in these areas, where detritivore diversity is
already lower than at higher latitudes as shown here and
elsewhere25,26, may cause the greatest impact on decomposition.
Detritivores in tropical areas are particularly vulnerable, because
of the prevalence of multiple environmental stressors. For
example, concentrations of agricultural pesticides have limited
regulation in many tropical countries34 and are known to cause
mortality in many detritivores35–37. Climate warming is also
likely to cause more extinctions in the tropics because more
detritivore species are closer to their thermal maxima than
elsewhere25 and are likely to suffer greater physiological changes,
despite the smaller changes in temperature occurring in this
latitudinal zone38. Nevertheless, other climatic changes such as
increased droughts can be more important at higher latitudes39.

We found that the influence of detritivore abundance and
biomass on decomposition also varied with latitude, but with
negligible effect in the tropics and more important at higher
latitudes. These variables have previously been found to be
important predictors of decomposition in some tropical
streams40, but here their importance was lower in the tropics than
elsewhere. In temperate areas, both relationships were non-linear
and complex (with decomposition first decreasing and then
increasing with higher abundance or biomass), which impedes
predictions about how decomposition might be altered by
changes in these variables. Moreover, responses of abundance and
biomass to environmental stressors are not as straightforward as
diversity loss, because lost species can be replaced by more tol-
erant ones that thrive under stressful conditions and can cause an
overall increase in numbers41,42. Smaller detritivores are often
more sensitive to stressors than larger ones42, although this var-
iation could be due to taxonomic differences rather than to size.
Our results suggest that species replacements under environ-
mental stress could result in an overall increase in biomass, but
this possibility needs confirmation.

The distribution of most detritivore families corresponded to
broad realms (Fig. 5), with 26 families showing a Laurasian dis-
tribution (i.e. being present in the Palearctic and/or Nearctic
realms) and 14 families a Gondwanan distribution (Neotropical,
Afrotropical, Australasian, and/or Indomalayan realms).
Although we did not perform phylogenetic analyses, this
dichotomy, together with the observation that diversity and
abundance of detritivores were higher in the Palearctic and
Nearctic (and their predominant biomes and climates), suggests
that patterns of variation in diversity and abundance were at least
partly determined by biogeography. Our findings contrast with
those for angiosperms, current distributions of which do not
correspond to tectonic history, possibly because of the existence
of high transoceanic dispersal43; however, they support
patterns for organisms with lower dispersal, such as liverworts
and conifers44, which show clear Laurasian–Gondwanan
disjunctions45.

The strong influence of biogeography on detritivore diversity
and abundance, and the fact that these two variables are key

Table 2 Results of linear mixed effects models exploring
variation in detritivore and total invertebrate diversity,
abundance, biomass and mean body size, and
PERMANOVAs exploring variation in assemblage
composition, among realms, biomes and climates.

Effect df F p

Diversity
Realms 6, 1090 387.33 <0.001
Biomes 7, 1089 251.67 <0.001
Climates 10, 1086 196.78 <0.001
Abundance
Realms 6, 1090 109.38 <0.001
Biomes 7, 1089 64.70 <0.001
Climates 10, 1086 58.46 <0.001
Biomass
Realms 6, 1090 44.16 <0.001
Biomes 7, 1089 60.57 <0.001
Climates 10, 1086 31.64 <0.001
Mean body size
Realms 6, 1090 472.25 <0.001
Biomes 7, 1089 472.33 <0.001
Climates 10, 1086 363.65 <0.001
Composition
Realms 5, 37 2.30 0.002
Biomes 6, 37 1.54 0.015
Climates 9, 37 1.32 0.029

We show degrees of freedom (df) for numerator and denominator, and values of F and p for
each factor. Realms: Pa, Palearctic; Ne, Nearctic; Au, Australasian; Nt, Neotropical; At,
Afrotropical; and In, Indomalayan. Biomes: Tu, tundra; TeBF, temperate broadleaf forest; TeCF,
temperate coniferous forest; MeF, Mediterranean forest; XeS, xeric shrubland; TrWF, tropical
wet forest; and TrS, tropical savanna. Climates: A, equatorial (Af, fully humid; Am, monsoon; As,
with dry summer; Aw, with dry winter); C, warm temperate (Cfa, fully humid with hot summer;
Cfb, fully humid with warm summer; Csa, with dry and hot summer; Csb, with dry and warm
summer); D, snow (Dfb, fully humid with warm summer; Dfc, fully humid with cold summer).

Fig. 4 Global distribution of study sites in different climates [A, equatorial (Af, fully humid; Am, monsoon; As, with dry summer; Aw, with dry winter);
C, warm temperate (Cfa, fully humid with hot summer; Cfb, fully humid with warm summer; Csa, with dry and hot summer; Csb, with dry and warm
summer); D, snow (Dfb, fully humid with warm summer; Dfc, fully humid with cold summer)]; n = 38. Box plots show the median, interquartile range
and minimum-maximum range of litter-consuming detritivore diversity (number of families per litterbag), abundance (number of individuals per litterbag),
biomass (mg per litterbag) and mean body size (mm) in each climate (ordered from highest to lowest diversity); different letters indicate significant
differences. The NMDS ordination of litter-consuming detritivores with biomes is represented by polygons of different colours as in maps and box plots.
Significant differences in assemblage structure were: Aw vs. Cfb, Cfa, Dfb; Af vs. Cfa, Cfb, Dfb.
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drivers of decomposition, suggest that the split of Pangea in the
Late Jurassic (≈200Ma ago) had a crucial legacy effect on the
current functioning of stream ecosystems and the influence of
ongoing environmental change. The lower detritivore diversity of
tropical streams25 and the higher susceptibility of their fauna to
extinction38 make these streams more vulnerable to reductions in
decomposition rates that are associated with impaired ecosystem
functioning46,47. This observation, together with the over-
exploitation of natural resources that severely affects tropical
stream ecosystems48, indicates that tropical detritivore species
should be of high conservation concern globally.

Methods
Study sites. We conducted our study in 38 headwater streams located in different
regions in 23 countries (Figs. 2–4). A random distribution of sites was unfeasible,
so some regions were underrepresented (mostly Africa and northern Asia), which
is usually the case for globally distributed experiments28,49,50. Streams were similar
in size (mean ± SE: wetted channel width, 3.9 ± 0.1 m; water depth, 28.7 ± 0.4 cm;
1st–3rd order) and physical habitat (alternating riffles and pools). Most had rocky
substrate and were shaded by a dense riparian vegetation (64 ± 1%) representative
of the region. They were located in 6 realms, 7 biomes, and 10 Köppen climate
classes51. In each stream we selected a ca. 100-m long reach with 5 consecutive pool
habitats in which to conduct the experiment. Further information on site physi-
cochemical characteristics is given in Supplementary Table 4.

Field and laboratory work. At each site, we incubated 6 different 3-species litter
mixtures, which included 9 species in total (Supplementary Table 5). The species
and mixtures were chosen to represent different levels of functional diversity for a
companion study52, but here our interest was to use a variety of mixtures and thus
increase the generality of our results (as opposed to working with a single or a few
species). The 9 species were collected at different locations around the world and
distributed among partners52; we considered the possible home-field-advantage
effect of using litter from different origins negligible based on available
literature53,54.

Litter mixtures were enclosed within paired coarse-mesh (5 mm) and fine-mesh
(0.4 mm) litterbags containing the same amount and type of litter. The two types of
litterbag respectively quantified total and microbial decomposition, and allowed the
calculation of detritivore-mediated decomposition (see below). There were 60

litterbags per stream (n= 5 per litter mixture and mesh size), each containing 3 g
of senescent litter (1 g per species), which had been collected freshly fallen from the
forest floor, air-dried and distributed among research partners52. Litterbags were
deployed in each stream (one litterbag per litter mixture type and mesh size in a
different stream pool, with all 5 pools consecutive) in 2017–2019 at the local time
of the year with the greatest litter input and were retrieved after 23–46 d,
depending on water temperature in each stream, thereby halting the decomposition
process at a comparable stage (mean ± SD: 32 ± 17% litter mass loss on average for
all the litter mixtures, 41 ± 18% for the fastest decomposing mixture52; mean values
for each biome are given in Supplementary Fig. 1). Litterbags were transported to
the laboratory on ice enclosed individually in zip-lock bags and rinsed with filtered
stream water to remove attached sediment and invertebrates. Litter was oven-dried
(70 °C, 72 h) and a subsample weighed, incinerated (500 °C, 4 h) and re-weighed to
calculate the final ash-free dry mass (AFDM). Invertebrates were sorted, and litter-
consuming detritivores were counted and identified under a binocular microscope
to the highest taxonomic level possible (mostly species or genus, and family in
some cases), using available literature and local expert knowledge.

Calculation of variables. We quantified litter decomposition in each litterbag as
the proportion of litter mass loss (LML) per degree day (dd), to account for
differences in temperature across sites; LML= [initial AFDM (g) – final AFDM
(g)]/initial AFDM (g), where initial AFDM was previously corrected by leaching,
drying and ash content, which were estimated in the laboratory55. We calculated
detritivore-mediated decomposition as the difference in LML between paired
coarse-mesh and fine-mesh litterbags30. Total and detritivore-mediated decom-
position were strongly correlated (r2= 0.90, p < 0.001), but we used both as
response variables in the analyses because the former is more relevant at the
ecosystem level and the latter reflects patterns mediated solely by detritivores.

We quantified detritivore diversity in each coarse-mesh litterbag as taxon and
family richness; as they were strongly correlated (r2= 0.90, p < 0.0001), we used
family richness for analyses to avoid taxonomic inconsistencies among sites. We
quantified abundance as the number of individuals per litterbag. We estimated total
biomass based on mean body size using published equations for each family, and
mean body size based on abundance and the mean of a body size category (2.5–5.0,
5.0–10.0, 10–20, 20–40 and 40–80 mm) that was assigned to each family using
available literature56–63.

Data analyses. We examined the influence of detritivore diversity, abundance,
biomass, mean body size, latitude and the interactions between detritivore variables
and latitude on decomposition, using generalised additive models (GAMs, gam
function, ‘mgcv’ package v. 1.8.3164,65) and a model selection (dredge function,
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Fig. 5 Distribution of detritivore families in our study, which was predominantly Laurasian (blue) or Gondwanan (green); insert indicates origins of
those two regions (≈200Ma). Photographs represent a subset of families (ordered left to right from the most to the least abundant in our study) and
asterisks denote families that were globally distributed but more abundant in one of the two areas. A complete list of families is provided in Supplementary
Table 1. Photograph credits: L. Boyero, A. Cornejo, R. Figueroa, N. López-Rojo, F. Masese, J. Pérez, J. Rubio-Ríos, J. Vieira and C. M. Yule.
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‘MuMIn’ package v. 1.43.17) based on Akaike weights66. A model selection
approach was used to identify which factors and interactions were included in the
models with the highest conditional probabilities (i.e. Akaike weights; Supple-
mentary Table 2). Models were fitted using tensor product interaction smooths (ti)
with a normal or gamma distribution (depending on model fit and residuals) and
the identity-link function67. We used this type of model instead of a linear model
because preliminary data exploration showed the existence of non-linear
patterns68. Total or detritivore-mediated decomposition was the response variable,
and detritivore diversity, abundance, biomass, mean body size, absolute latitude
and the interactions between detritivore variables and latitude were predictors,
fitted as smooth terms. Exploring differences among litter mixtures was beyond the
scope of this study (but see Boyero et al.52, where litter diversity effects on
decomposition were examined based on the same experiment described here), so
we averaged values of different mixtures rather than including the mixture as a
random factor in a generalised additive mixed model, which would be highly
complex and would not converge when using interactions and variance functions
(see below). Spatial correlation among sites was tested using the autocorrelation
function (ACF) with residuals of the final model; all values were <1 as recom-
mended by Zuur et al.67. Abundance and biomass data were log (x + 1)-trans-
formed to avoid the disproportionate influence of outlying data observations on
model estimates68. As interactions of detritivore variables with latitude were sig-
nificant, we explored the relationships for tropical (≤23° of latitude), temperate
(24–60°) and boreal zones (>60°) through a model that was similar to the one
described above, but with latitude as a categorical rather than continuous predictor.
This was done to facilitate the representation and interpretation of complex non-
linear relationships between two continuous predictors.

We explored differences in detritivore variables across realms, biomes and
climates with linear mixed-effects models (lme function, ‘nlme’ package v.
3.1.15169) where realm, biome or climate were fixed factors and litter mixture type
was a random factor, followed by pairwise comparisons using adjusted P-values
(glht and mcp functions, ‘multcomp’ package v. 1.4.1370). The variance was
allowed to differ among realms and biomes using the VarIdent structure.
Normalised residuals of the final model were inspected with plots of residuals vs.
each predictor, and no pattern was observed. Variation in assemblage composition
was explored with non-metric multidimensional scaling (NMDS, monoMDS
function, ‘vegan’ package v. 2.5.6)71 calculated on Hellinger transformed
abundance data and permutational analysis of variance (PERMANOVA) based on
a Bray–Curtis dissimilarity matrix. We compared realms, biomes and climates
(adonis function, ‘vegan’ package), followed by pairwise comparisons (pairwise.
adonis function), and determined which were the most representative families in
each assemblage (simper function). All analyses were run on R v. 4.0.2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available at https://doi.org/10.6084/m9.
figshare.14245538.v1.
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