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ABSTRACT
Background. The Shannon diversity index has been widely used in population genetics
studies. Recently, it was proposed as a unifyingmeasure of diversity at different levels—
from genes and populations to whole species and ecosystems. The index, however,
was proven to be negatively biased at small sample sizes. Modifications to the original
Shannon’s formula have been proposed to obtain an unbiased estimator.
Methods. In this study, the performance of four different estimators of Shannon
index—the original Shannon’s formula and those of Zahl, Chao and Shen and Chao
et al.—was tested on simulated microsatellite data. Both the simulation and analysis
of the results were performed in the R language environment. A new R function was
created for the calculation of all four indices from the genind data format.
Results. Sample size dependence was detected in all the estimators analysed; however,
the deviation from parametric values was substantially smaller in the derived measures
than in the original Shannon’s formula. Error rate was negatively associated with
population heterozygosity. Comparisons among loci showed that fast-mutating loci
were less affected by the error, except for the original Shannon’s estimator which, in the
smallest sample, was more strongly affected by loci with a higher number of alleles. The
Zahl and Chao et al. estimators performed notably better than the original Shannon’s
formula.
Conclusion. The results of this study show that the original Shannon index should
no longer be used as a measure of genetic diversity and should be replaced by Zahl’s
unbiased estimator.

Subjects Biodiversity, Evolutionary Studies, Genetics, Population Biology
Keywords Genetic diversity, Shannon index, Coalescent simulations, Measures of genetic
variation, Sample size effect, Statistical genetics

INTRODUCTION
The Shannon diversity index (Shannon, 1948), also known as the Shannon-Wiener index,
Shannon entropy or, incorrectly, the Shannon-Weaver index (Spellerberg & Fedor, 2003),
has been used to estimate genetic diversity in numerous studies. It can be utilised
to describe variation at multiple levels of genetic organisation from single nucleotide
polymorphisms (SNP), through whole species or larger taxonomic units to ecosystems.
Due to its additive properties (Jost, 2007), the Shannon index has recently been postulated
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as a unifying measure for the partitioning of diversity at those levels (Gaggiotti et al., 2018;
Sherwin, 2018). Additionally, Sherwin et al. (2017) showed its potential utility in genomic
studies. Several population genetics programs and R packages calculate Shannon’s H,
e.g., GenAlEx (Peakall & Smouse, 2012), DartR (Gruber et al., 2018), SpadeR (Chao, Ma
& Chiu, 2016), vegan (Oksanen et al., 2019), poppr (Kamvar, Tabima & Grünwald, 2014),
GenoDive (Meirmans & Tienderen, 2004), HierDpart (Qin, 2019) and the index is still in
use (e.g., O’Reilly et al., 2018; Zhang et al., 2019; Chang, Huang & Liao, 2019).

The measure was initially developed within information theory (Shannon, 1948) but
it was soon adopted in studies on species diversity (e.g., Good, 1953; Margalef, 1957;
Crowell, 1961) and in population genetics (Jain et al., 1975). In principle, Shannon’s H
takes into account the proportion of each species in an ecosystem studied; hence, it gives
a better description of an ecosystem’s diversity than a plain number of species. When
the number of species is equal in two locations, the index is capable of distinguishing
between sites dominated by a single or only a few predominant species and those where
each species has comparable input to the whole biodiversity (Margalef, 1957). Similarly,
in population genetics studies, Shannon’s H allows distinguishing the level of variation
between populations with the same number of alleles, when in some populations loci
are dominated by only a few common alleles while in others variation is contributed
more evenly by all alleles. The Shannon index is more sensitive to the loss of rare variants
(e.g., due to genetic bottlenecks) than heterozygosity, and more informative than allelic
richness or a plain number of alleles (Sherwin et al., 2017).

In the original formula of the Shannon index developed within information theory,
it is assumed a researcher is capable of counting all words or letters in a text studied. In
biological studies, however, researchers depend on a sample from the population and
use it as a proxy for the population parameters. The index changes rapidly when the
number of low-frequency occurrences grows, while their number depends on the sample
size (Basharin, 1959; Chao & Shen, 2003). The probability that all the alleles are sampled
falls dramatically when the sample size is small. At the same time, in small samples, the
lack of some allele inflates the frequencies of the alleles that have been sampled. As a
solution to that, a few unbiased estimators of H have been proposed. The methods use
jack-knifing (Zahl, 1977), rarefaction (Chao & Shen, 2003) or the Good-Turing frequency
formula (Good, 1953; Chao, Wang & Jost, 2013) to account for unsampled components of
the system (i.e., species or alleles). Although the issue of sample size in population genetics
has been addressed in several studies (e.g., Marquez-Sanchez & Hallauer, 1970; Gorman &
Renzi, 1979; Chakraborty, 1992; El Mousadik & Petit, 1996; Leberg, 2002; Pruett & Winker,
2008), the dependence of Shannon’s diversity estimation on sample size has never been
thoroughly discussed with regard to genetic data. Bashalkhanov, Pandey & Rajora (2009)
noticed an increase in the deviation of Shannon’s H at small sample sizes; however, the
only solution they suggested was increasing the sample size to 60–90 genotypes. However,
Sherwin et al. (2017) pointed out that althoughmethods for sampling correction ofH exist,
unbiased estimators remain rarely applied in population genetics studies.

The aimof this studywas to assess the effect of sample size and locus properties (mutation
rate and the maximum possible number of allelic states) on the estimation of Shannon’s
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Table 1 Combination of mutation rates and a maximum number of allelic states in the 24 loci simu-
lated in fastsimcoal2.

Max. number of alleles
3 6 9 12 15 20

0.0001 L01 L02 L03 L04 L05 L06
0.0002 L07 L08 L09 L10 L11 L12
0.0005 L13 L14 L15 L16 L17 L18

Mutation
rate

0.001 L19 L20 L21 L22 L23 L24

original index (HMLE) and its three unbiased estimators proposed by (Zahl, 1977) (HZ ),
(Chao & Shen, 2003) (HCS), (Chao, Wang & Jost, 2013) (HChao). The performance of the
four indices was tested extensively on data generated using coalescent simulations. The
relative effects of sample size, locus properties and population diversity were analysed with
a Generalised Linear Model. A wrapper R function was written to allow for estimation of
the four indices directly on adegenet ’s ‘genind’ objects.

MATERIALS & METHODS
Analyses were conducted in R 3.6.2 (R Development Core Team, 2009). Coalescent
simulations as implemented in fastsimcoal2 ver. 2.6 (Excoffier et al., 2013) were used to
generate populations differing in levels of genetic variation due to their demographic
histories. The program was called from within the R environment using the strataG
package ver. 2.0.2 command fastsimcoal (Archer, Adams & Schneiders, 2017). Twenty-four
microsatellite loci with four different mutation rates (0.0001, 0.0002, 0.0005 and 0.001
mutations per generation) and six different maximum numbers of alleles (3, 6, 9, 12,
15 and 20 alleles) were simulated (Table 1). The model assumed a large population of
10,000 diploid individuals divided into four populations containing 10,000 individuals
each. Three of those underwent bottlenecks of different sizes (20, 50 and 500 individuals
in populations P20, P50 and P500 respectively) while the fourth, the control population (PC
remained at a stable size of 10,000 individuals. Each of the bottlenecked populations after
20 generations recovered to the original size of 10,000 and was simulated for another 20
generations until time T0 when samples equalling the whole populations were saved both
from bottlenecked and control populations. Reference parametric values of four different
Shannon’s estimators were calculated for each total population sample:
- HMLE—the maximum likelihood estimate of H based on the original Shannon’s

formula (Shannon, 1948, Theorem 2)—probably the most widely used in population
genetics;

- HCS—unbiased estimator proposed by Chao & Shen (2003, equation 8);
- HChao—unbiased estimator proposed by Chao, Wang & Jost (2013, equation 7);
- HZ—jackknife estimate proposed by Zahl (1977, equation 7).
Additionally, expected heterozygosity (He) was calculated as a reference measure of the

genetic variation of the total populations.
The four H estimators are calculated using the function Diversity in R package SpadeR

(Chao, Ma & Chiu, 2016). Initial attempts to apply the function to the simulated set
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showed that the function often fails due to a problem with another nested function that
estimates species richness. Moreover, the function has to be run separately for each locus
to obtain locus-specific H. Therefore, a generic function (ShannonGen) was written using
the formulas from the shannon_index function nested in Diversity. The function takes
genind objects as the input and transforms them into abundance data, which is required by
functions taken from shannon_index. ShannonGen returns a list containing user-selected
estimators of H for all loci and populations included in the input object. The function can
be acquired from GitHub (https://github.com/konopinski/Shannon/).

The Shannon diversity index estimators were calculated for samples of Ns = 5, 20, 80
and 200 genotypes drawn randomly without replacement from the simulated populations,
The numbers of samples used were selected to represent four sampling scenarios:
- limited availability of samples—a situation often faced in studies on rare or elusive

animals—Ns = 5 samples;
- a minimum acceptable number of samples as suggested by Pruett & Winker (2008)

commonly occurring in population genetics studies—Ns = 20 samples;
- optimal sampling, according to Bashalkhanov, Pandey & Rajora (2009)—Ns = 80

samples.
- a very large sample with presumably low sampling error—Ns = 200 samples.
Additionally, the parametric values were obtained from the simulated populations.
Sampling variance of each H estimator was assessed using 500 sets of samples randomly

drawn from each of the simulated populations. The standard deviations (SD) of the results
were calculated for each sample size and demographic scenario. The SD values distributions
were compared pairwise between metrics. The level of significance was assessed based on
100,000 comparisons of the randomly drawn pairs of the SD values.

For eachH estimator, a relative bias was calculated as rB= ((Ĥ−H )/H ), where Ĥ is the
estimate of a given metric in a sample, and H is the parametric value of a given estimator.
The bias was estimated only once per each metric/population/iteration (i.e., 16,000 times).
The error of the metric was estimated as a mean relative squared error (MRSE):

MRSE = 1
500

∑500
i=1
(Ĥi−H)

2

H , where Ĥ i is an estimate of a metric in the i-th sample of the
500 resamplings that were carried out to estimate the mean.

To explore the factors influencing the errors of the analysed indices, the generalised
linear model, glm, a function from R’s stats package, was used. The model includedMRSE
as the response and four explanatory variables: H estimator, sample size, population gene
diversity and locus. To avoid overparametrisation, the GLM analyses were performed in
two steps. Firstly,MRSE of mean H values over the 24 simulated loci were provided to the
model as an effect; secondly,MRSE calculated for each locus separately was used.

Because the relation between sample size and MRSE is asymptotic, and the effect size
may depend on arbitrarily selected number of samples, the values were provided to the
model as categorical values (factors). The best-fitting model was selected based on the
Akaike Information Criterion (AICc) as implemented in the model.sel function from
the R package MuMIn (Bartoń, 2019). The GLM results were analysed using the Anova
function from the package car (Fox & Weisberg, 2019). The effects of the explanatory
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Table 2 Summary of the simulations. Minimum, maximum andmedian values of theH estimators
and the Nei’s gene diversity (Hs) calculated for the four simulated demographic scenarios.

Population HMLE HZ HCS HChao Hs

min 1.5159 1.5161 1.5160 1.5161 0.6996
PC median 1.6706 1.6708 1.6706 1.6708 0.7568

max 1.7834 1.7836 1.7834 1.7836 0.7889
min 1.4220 1.4221 1.4221 1.4221 0.6764

P500 median 1.6075 1.6077 1.6075 1.6077 0.7428
max 1.7409 1.7411 1.7409 1.7411 0.7795
min 0.9940 0.9941 0.9941 0.9941 0.5347

P50 median 1.2007 1.2009 1.2008 1.2009 0.6266
max 1.3441 1.3443 1.3442 1.3443 0.6843
min 0.5927 0.5928 0.5929 0.5928 0.3179

P20 median 0.8281 0.8282 0.8282 0.8282 0.4731
max 1.0077 1.0079 1.0079 1.0079 0.5734

variables were visualised using the R package effects (Fox & Weisberg, 2018; Fox & Weisberg,
2019). Tukey’s Honest Significant Difference (Tukey’s HSD; Tukey, 1977) method was
used to test whether the differences between the factors were significant. The function
glht from the R package multcomp (Hothorn, Bretz & Westfall, 2008) was used to perform
the analysis, while cld was used to summarise results and present them as compact
letter displays (Piepho, 2004). The script used for simulations is deposited at Github
(https://github.com/konopinski/Shannon/).

RESULTS
Each metric was estimated altogether 192 096 000 times in 24 loci, 4 populations (PC , P500,
P50, P20), 5 sample sizes (i.e., 5, 20, 80 and 200 genotypes and for the whole simulated
population to obtain parametric values), 500 randomizations and 1000 simulation
repetitions. Mean expected heterozygosities calculated for the simulated total populations
ranged from He = 0.318 to He = 0.789 with median He = 0.683. The parametric values of
the four H indices were similar within each of the simulated demographic scenario both
in terms of their median values and their ranges (Table 2).

Attempts to estimate the sampling variance of HCS failed in 1,689 out of 16,000
resampling attempts, i.e., roughly 10%. The problem occurred only in the smallest
simulated samples (Ns = 5) and only in the most variable populations: 937 in PC and 752
in P500. Similarly, mean HCS could not be estimated in 10 cases in the 16 000 population
sampling simulations extracted from the whole set to estimate bias. The problem occurred
only in the most variable populations (7 failures in PC and 3 in P500) and in the smallest
sample size. The loci that caused the problem were those simulated with a large number
of possible allelic states (12, 15 and 20 alleles) and the problem was more frequent in the
loci with higher mutation rates (Table S1). Due to the large proportion of missing data,
the estimates of HCS from the populations PC and P500 simulated with the smallest sample
size Ns= 5 were excluded from the sampling variance comparisons, and the 10 samples
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that failed at estimation of HCS in the simulations of population sampling were excluded
from assessment of the performance of the H indices.

The standard deviation of the results distribution from the repeated sampling depended
on sample size, demographic scenario and H estimator (Fig. 1). Standard deviations of
HMLE were significantly lower in all pairwise comparisons (Table 3). Among the remaining
metrics, the estimates of HZ had significantly narrower distribution then HChao in control
populations (PC) and the populations that underwent a bottleneck of 500 genotypes (P500).
In larger sample sizes, Ns= 20, 80 and 200, the distributions of standard deviations of HZ ,
HChao and HCS were not significantly different in any of the pairwise comparisons.

The median relative bias (rB) of the H estimates averaged over the 24 loci was inversely
associated with the sample size in all cases (Fig. 2, Table 4). As compared to other H
estimators at all sample sizes, the strongest negative departure from parametric values
(i.e., calculated from the total population) was observed in HMLE estimates. Among the
remaining three H estimates, HChao and HZ were the least biased (Table 4). Except for
the HMLE estimates at sample sizes below 80 genotypes, 95% confidence intervals of H
estimators always spanned the parametric value of the simulated data. The observed relative
bias ranges were markedly wider in the smallest samples.

The analyses of relative error (MRSE) provided similar findings. Based on AICc
summarised by MuMIn function, the gamma distribution of MRSE with a log link
function was used in the GLM. According to ANOVA test of the GLM results, all four
factors—locus, metric, sample size and expected heterozygosity of the total population
(He)—were significantly associated with the error levels (p = 10−15). The median MRSE
of H estimators was negatively associated with the sample size. When compared to Ns =
200 genotypes, the slope of the relation, β, increased on decreasing sample size, from β

= 0.97 for Ns = 80 genotypes, to β = 4.46 for Ns = 5 individuals (p= 10−15). Tukey’s
HSD analysis of GLM results confirmed the differences between error levels among all the
different sample sizes were significant for all metrics. The strongest effect of sample size
onMRSE was observed for HMLE (Fig. 3). The remaining H estimators were markedly less
affected by a small sample size with HCS performing slightly worse than HZ and HChao.
Analysis of GLM results using Tukey’s HSD showed that among all the metrics, HChao and
HZ were significantly less affected by error than the other two estimators at the majority of
sample sizes (Table 5). Only at the smallest sample size, the difference between HChao, HZ

and HCS was not significant. The error levels were also strongly negatively associated with
the He of the total population (β = −0.71, p= 10−15, Fig. 4). In the case of HMLE and HZ ,
the effect depended on the sample size, being, positive at the smaller sample sizes: Ns ≤ 80
in HMLE and Ns = 5 in HZ .

In the second analysis, locus properties were tested. ANOVA of the GLM results showed
that locus predictor was significantly associated with the MRSE (p= 10−15) in all metrics.
The size of the effect depended on mutation rates, the maximum number of alleles (Fig. 5)
and expected heterozygosity at a given locus (Figs. S1–S4). Mutation rates had a more
substantial effect on MRSE (line colors in Fig. 5) than the maximum number of allelic
states at a locus (line types in Fig. 5; Table S1), except forHMLE at the smallest sample size in
which case the error increased at fast mutating loci with the number of allelic states possible
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Figure 1 Density plots of SD distributions obtained through repeated sampling ofNs = 5, 20, 80 and
200 genotypes from each population representing different demographic scenario in each simulation.
Sample sizes (columns): (A–D) Ns = 5, (E–H) Ns = 20, (I–L) Ns = 80, (M–P) Ns = 200. Demographic
scenarios (rows): (A), (E), (I), (M) P20, (B), (F), (J), (N) P50, (C), (G) ,(K), (O) P500, (D), (H), (L), (P) PC .

Full-size DOI: 10.7717/peerj.9391/fig-1

(L13-L24). The error level of HZ , HChao and HMLE decreased with the total population’s
He of the locus (Figs. S1–S4). The slope of this relation was steeper in loci with fewer allelic
states allowed (e.g., L01, L07, L13 and L19). In case ofHCS the MRSE at the smallest sample
size, Ns = 5, was positively correlated with He at fast mutating loci with more allelic states
allowed, while at the remaining sample sizes the relation was negative.

DISCUSSION
The problem of sample depencence of genetic diversity measures has been observed in
estimation the number of alleles in populations; to tackle the issue, the rarefaction method
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Table 3 Sampling variance of theH estimators calculated forNs= 5 genotypes. Mean SD of each esti-
mator in each demographic scenario, and the p-values of pairwise comparisons of the SD distributions.

Population Metric Mean SD
of metric

p-values

HZ HCS HChao

PC HMLE 0.0436 10−5 – 10−5

HZ 0.0599 – 0.0038
HCS – –
HChao 0.0704

P500 HMLE 0.0439 10−5 – 10−5

HZ 0.0596 – 0.0191
HCS – –
HChao 0.0683

P50 HMLE 0.0439 0.0001 0.0004 0.0016
HZ 0.0547 0.6397 0.5189
HCS 0.0565 0.8547
HChao 0.0572

P20 HMLE 0.0399 0.0418 0.0345 0.0498
HZ 0.0472 0.8478 0.9290
HCS 0.0480 0.9344
HChao 0.0479

was proposed for estimating allelic richness instead of the plain number of alleles (El
Mousadik & Petit, 1996; Kalinowski, 2004). Allelic richness quickly gained attention and
became a popular estimator of genetic variation. On the other hand, the advances in
Shannon diversity index estimation proposed by Zahl (1977), Chao & Shen (2003) and
Chao, Wang & Jost (2013) remain unnoticed in population genetics studies.

The results of the present study confirm what has been known from species diversity
studies (Pielou, 1966), that the original Shannon index, HMLE is strongly dependent on
sample size. This phenomenon is stronger both in more genetically variable populations
and in more variable loci, particularly at small sample sizes. It is not possible to estimate
the true value of Shannon index using HMLE when the sample size is small. The most likely
explanation for it is that in small samples, the probability that all alleles have been captured
is lower than when the sample is large. The so-called nearly unbiased estimators also showed
some level of bias, even in samples as big as 200 genotypes; however, the difference was
negligible (less than 1h), and the parametric values were well within the 95% confidence
intervals of results from the simulated samples. Those measures performed better at more
diverse loci and populations, where both rB and MRSE were, on average, smaller. On the
other hand, the error levels of unbiased metrics were more dependent on mutation rates
rather than the maximum possible number of allelic states at the locus, which may suggest
that the occurrence of low-frequency alleles stemming from numerous mutation events
has a stabilising effect on those estimators. Using HCS bears a high risk of encountering
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Figure 2 Box-whisker plot of relative bias (rB) of the four ShannonH estimators in all the simulated
demographic scenarios and sample sizes. (A)HMLE , (B)HMLE , (C)HCS, (D)HChao. The whiskers repre-
sent the range of maximum and minimum values, the top and bottom of the boxes represent the 75% and
25% quartiles. White—non-bottlenecked, control population (PC ), light-grey—bottleneck of 500 individ-
uals (P500), dark-grey—bottleneck of 50 individuals (P50), anthracite—bottleneck of 20 individuals (P20).

Full-size DOI: 10.7717/peerj.9391/fig-2

problems when the sample sizes are small, and the level of genetic variation is high, which
makes this metric hardly useful in population genetics studies. The performance of this
metric is similar to that of the other two unbiased H estimators; however, it proved to
be less precise than HChao and HZ . The analysis of the simulations results suggest the
Zahl jackknife estimator HZ as the most suitable estimator of Shannon diversity index to
describe variation at multiallelic loci such as microsatellites. Among the three unbiased
estimators, HZ had the lowest sampling variance and the smallest bias, which also results
in the lowest error as compared to the other metrics. For this reason, HZ should replace
traditionally used HMLE in population genetics studies using microsatellites.
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Table 4 Minimum, maximum andmean values of the relative bias (rB) of all ShannonH estimators
and sample sizes tested.

Sample size HMLE HZ HCS HChao

min −0.3222 −0.2097 NA −0.2232
5 median −0.1872 −0.0229 NA −0.0186

max −0.0073 0.1599 NA 0.1344
min −0.1252 −0.0939 −0.1063 −0.0956

20 median −0.0508 −0.0024 −0.0142 −0.0041
max 0.0335 0.0809 0.0808 0.0777
min −0.0527 −0.0423 −0.0420 −0.0424

80 median −0.0139 −0.0009 −0.0059 −0.0013
max 0.0258 0.0403 0.0478 0,0407
min −0.0318 −0.0259 −0.0222 −0.0261

200 median −0.0058 −0.0004 −0.0021 −0.0005
max 0.0185 0.0250 0.0296 0.0248

Sample size

M
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E
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10
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5 20 80 200

HChao

HCS
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Figure 3 GLM results: the effect of the sample size predictor on the mean relative squared error
(MRSE) of the four ShannonH estimators.

Full-size DOI: 10.7717/peerj.9391/fig-3

Although all the results presented here were derived from simulating microsatellite loci,
the pattern of differences among them shows that the estimates of the Shannon index
for less variable loci are more error-prone than for multi-allelic markers. However, as
SNP markers are mostly biallelic and the H estimates might be more affected by error at
individual loci, the effect of the errors averaged over a large number of loci usually used
in SNP-based studies may become negligible. Further simulation and empirical tests are
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Table 5 Compact letter display of Tukey HSD post hoc test of all pair-wise comparisons between the
effects of theH estimators onMRSE. Four independent tests were performed on data with fixed sample
sizes.

Sample size Estimator

HMLE HZ HCS HChao

5 d a b c
20 d a c b
80 d a c b
200 c a b a

He

M
R
S
E

0.4 0.5 0.6 0.7
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0.4 0.5 0.6 0.7
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D
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Figure 4 GLM results: the effects of total population’s expected heterozygosity (He) and the sample
size (Ns) predictors on the mean relative squared error (MRSE) of (A)HMLE , (B)HZ , (C)HCS and (D)
HCh.

Full-size DOI: 10.7717/peerj.9391/fig-4

necessary to investigate the performance of the Shannon index in SNP loci. While the cost
NGS analyses has dropped significantly in recent years, and the present computational
power enables analyses of a large amount of data, the problem of small sample sizes in
genomic studies remains critical in studies of vulnerable or elusive species, i.e., the cases
where the Shannon index is still widely used.
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Figure 5 GLM results: locus (L01–L24) effects onmean relative squared error (MRSE) of the four
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