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Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem
resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of
numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial
blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like
poor transparency, increased water temperature and enhanced stratification. Consistency in data collection
and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding
issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an
initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological
variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient,
pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories.
Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic
areas that will contribute to better understanding lake responses in a changing environment.

Design Type(s) database creation objective • data analysis objective • observation design

Measurement Type(s) nutrient • biological pigment • cyanotoxin • thermocline

Technology Type(s)
data acquisition system • high performance liquid chromatography • high
performance liquid chromatography-mass spectrometry

Factor Type(s) lake • Country

Sample Characteristic(s)

Austria • lake • Switzerland • Cyprus • Czech Republic • Germany •
Kingdom of Denmark • Estonia • Kingdom of Spain • Finland • French
Republic • Greece • Croatia • Hungary • Republic of Ireland • Italy •
Lithuania • Macedonia • The Netherlands • Kingdom of Norway •
Poland • Portuguese Republic • Russia • Sweden • Slovenia • Slovak
Republic • Turkey • United Kingdom
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Background & Summary
Eutrophication still is the primary process threatening lakes and reservoirs and the services they provide,
like good quality drinking water, irrigation, fisheries and recreational opportunities. Anthropogenic
eutrophication is responsible for massive algal blooms. Cyanobacteria have diverse functional traits that
allow them to proliferate under various environmental conditions1. The frequency and size of
cyanobacterial blooms is increasing globally2,3. Excessive cyanobacterial biomass reduces light
penetration and enhances anoxia in the hypolimnion, thus reducing species habitats and biodiversity4.
Moreover, the toxins produced by bloom-forming cyanobacteria present a considerable risk to drinking
water5 and pose a substantial economic cost6,7.

Climate change, through direct and indirect effects of warming, increasingly plays a role in changing
physico-chemical and biological properties of aquatic ecosystems8–11, contributing to the global increase
in cyanobacterial blooms. Although optimal growth temperatures vary widely between cyanobacterial
strains and species, as well as for their eukaryotic competitors, their growth rate increases faster with
temperature than for other phytoplankton groups9,12, Longer ice-free seasons, reduced winter overturn
and enhanced water column stability in summer may all indirectly favour cyanobacterial blooms. In deep
peri-alpine lakes for instance, water column stability has increased by 20% in a response to warming of
the atmosphere13.

Interactions between nutrients and temperature-related changes are expected14–16. However, it is still
uncertain to what extent and following which mechanisms nutrients and temperature will interact to
amplify blooms. Climate forcing of blooms will differ among regions17. For example, at high latitudes and
equatorial areas, intense precipitation events are expected (IPCC7) to increase nutrient enrichment of
water bodies from enhanced surface runoff and groundwater discharge4, whereas at low and mid-latitude
continental interiors, droughts18 may reduce river flow rates, increase lake residence times and thereby
promote cyanobacteria. In hyper-eutrophic systems, high algal biomass may even increase local
temperature due to enhanced light absorption19. Thus, high nutrient concentrations may promote
warmer temperatures, giving a competitive advantage to buoyant cyanobacteria over non-buoyant algal
species4. All of these interactions between nutrients and temperature may vary with lake depth. Shallow
lakes respond more directly to nutrients and temperature than deep lakes, which, in contrast, are more
typically subjected to the indirect effects of the aforementioned drivers20.

Hence, a complex interplay of regional (climate), local (nutrients, lake morphometry) and biological
(species, functional groups) lake variables determines cyanobacterial bloom formation. Consequently,
studies covering different regions and lake types are needed to disentangle the relative importance of the
environmental predictors and their interactions. The European Multi Lake Survey (EMLS) obtained a
deeper insight into cyanobacterial dynamics under different ecosystem variables across Europe. A space-
for-time substitution, where contemporary spatial phenomena are studied in many lakes, instead of long-
term temporal studies in a limited number of lakes21, was used. The survey took place in summer 2015,
Europe’s third hottest summer on record, and comprised scientists from 27 countries that sampled 369
lakes only once. In this way, environmental gradients across wide geographic scales were covered with
relatively little effort and with higher cost efficiency. We sampled in summer as cyanobacterial blooms are
a distinct feature of summer phytoplankton22, during the locally warmest period, in order to test for
temperature effects on cyanobacteria. In EMLS, standardized sampling procedures were strictly followed
to ensure data homogeneity and eliminate site or operator related observation effects. Finally, lake
samples for nutrients, algal pigments and toxins were analysed in dedicated laboratories by one person on
one machine, minimizing variation in analytical errors.

Apart from providing a solid research dataset on which several analyses are being conducted, the
EMLS helped to enhance the standards for limnological data collection and stimulate international
collaboration. A subset of the EMLS toxin dataset has already been used in a recent publication to show
how the distribution in cyanobacterial toxins and toxin quota was determined by both direct and indirect
effects of temperature23. Here we additionally present the data for all lakes, including those without toxins
for the full set of data. The intention is that this publication of the EMLS dataset will further demonstrate
the feasibility and value of snapshot surveys, and encourage similar programs in a continuously changing
environment, i.e. at times when datasets covering large geographical gradients are in great demand.

Methods
Organization
To make EMLS a robust survey we bridged two European COST Actions24, CyanoCOST25,26

(Cyanobacterial blooms and toxins in water resources: occurrence impacts and management) and
NETLAKE27 (Networking Lake Observatories in Europe), planting the idea and promoting the
benefits of an extended collaboration amongst researchers from all over Europe. This research was
expanded to many other scientists not directly involved in these COST Actions.

The EMLS protocols required that each group of data providers collected and handled the samples
following the same standards. Therefore, the steps outlined below had to be followed by all participant
groups to ensure standardized sampling, sample processing and analyses, resulting in a homogenous
dataset. Any deviations from these protocols were recorded in the metadata spreadsheets, and these data
were handled with care after contacting the data collectors. To ensure that protocols were fit-for-purpose
and understandable to everyone, we invited representatives of each country involved in the CyanoCOST
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and NETLAKE actions to a three-day training workshop in Evian-Les-Bains, France. During the
workshop, participants discussed all aspects of EMLS and considered limitations in the financial and
logistic means for given countries, without compromising research quality. They finalized the protocols
and obtained hands-on experience in using them. To increase the number of studied lakes and achieve
adequate spatial variation, representatives of each country acted as EMLS-ambassadors, reaching-out to
further collaborators within their own countries and disseminating the decisions and protocols of
the EMLS.

The EMLS was a collective effort, which means that each participating group used their own financial
means to conduct their sampling as well as provided the personnel and facilities needed. Since the EMLS
was a zero-funding effort, individual countries mainly contributed with samples from lakes that they
routinely sample anyway, especially lakes with a history of eutrophication, given the implications for lake
management. Although this results in a bias towards productive lakes, unfortunately it also reflects
reality, with many lakes in Europe still suffering from eutrophication. A total of 369 lakes were sampled,
spanning from Cyprus to Finland, and from the Asian part of Turkey to the Portuguese Azores islands
(Fig. 1).

The workflow for organizing the EMLS consortium is presented as an infographic (Fig. 2). It illustrates
the logistics from organizing the local surveys (1) through obtaining the samples (2), to processing and
shipping them to the analytical laboratories (3-5). The data obtained from the field as well as laboratory-
analyses was quality controlled and integrated into a unique dataset before making available to the EMLS
network and to the rest of the scientific community. The methods of data acquisition and laboratory
analyses that are described below are expanded versions of descriptions in our related work23.

Data acquisition
Date and location (in situ). The field methods for the EMLS were designed to be completed within one
field day for each lake, but typically the sampling itself could be completed within two hours. Remote,
poorly accessible lakes required more time to reach and field crews had to plan accordingly. To optimize
time investment, lakes in close proximity were covered in one sampling trip. Each sampling group was
responsible to organize and prepare the sampling material and equipment for their sampling campaign.
In several cases, sampling groups of different areas or even countries collaborated and shared material
such as instruments and boats.

Figure 1. Map showing the locations of the 369 lakes sampled during the European Multi Lake Survey in

summer 2015.
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Figure 2. Schematic overview of the European Multi Lake Survey (EMLS). CyanoCOST and NETLAKE

members performed the sampling routine by: 1. Preparing the sampling material to meet the standardized procedures

2. Accessing the lake site and acquiring integrated water samples from the bottom of the thermocline up to the water

surface 3. Processing and preserving the water samples based on requirements for subsequent analysis 4. Shipping

samples to a central receiving laboratory 5. Analysing nutrient, pigment and toxin concentrations in dedicated

laboratories. After quality control checks and data integration the dataset returns to the European network and

becomes publically available for further research. Created by Sarah O’Leary and Eilish Beirne.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180226 | DOI: 10.1038/sdata.2018.226 4



Each EMLS data collector team had to identify the right sampling period, defined as the warmest two-
week period in summer, based on long-term air temperature data in each region, covering the last 10 or
more years. This predefined time-period served to minimize confounding effects of seasonality. Each lake
was sampled within this time window (Date; Table 1).

The sampling location for each lake was defined as the central point of the lake. If a particular lake had
been previously sampled at a specific location for long-term monitoring, the sample location from the
long-term monitoring was used instead of the lake centre. For lakes with more than one relatively isolated
basin, individual basins were sampled separately when possible, and indicated as such in the dataset (e.g.
TR_BEY_I and TR_BEY_II). The latitude and longitude of the sampling location were recorded with a
GPS device and provided in decimal degrees according to the WGS84 coordinate system.

If cyanobacterial surface blooms (defined as the presence of a visible surface scum) were present close
to where the team entered the lake or in close proximity to the sampling point, a second sampling
location was considered. A scoop surface sample, using a small sealable container like a Falcon tube, of
the cyanobacterial scum was acquired along with the water column sample. The location of the scum
sample was noted. Data collectors also provided - when available – maximum depth, mean depth and
altitude (Table 1) of the lake.

Temperature and Secchi depth (in situ). Temperature profiles were measured with available probes,
such as various CTDs or a Fluoroprobe (BBE Moldaenke). If no profiling instrument was available, water
samples were taken at 0.5 m intervals from the lake surface to the bottom of the thermocline (top of the
hypolimnion) and water temperature was measured using hand-held thermometers directly after
sampling. Here, the thermocline range was defined as the depth interval at which the rate of temperature
decreased at least 1 °C per metre. The bottom of the thermocline (where temperature no longer decreased
by 1 °C per meter), defined the sampling depth in the case of stratified lakes. For lakes where a
thermocline was not observed (mostly shallow lakes), the temperature profile was measured until the lake
bottom. In this case, the sampling depth was determined at 0.5 m above the lake bottom. From the
temperature profiles, we obtained surface and epilimnetic temperature (Table 1) as the average
temperature from surface until the bottom of the thermocline. The temperature profiles were also used
during data analysis, to calculate the location where the thermocline lies even between two temperature
measurement depths, which corresponds to where the thermocline is the most stable (point of maximum
buoyancy frequency). To calculate this thermocline depth (ThermoclineDepth_m, Table 1) we used the
command thermo.depth from the R package rLakeAnalyzer28. The Secchi depth (Table 1) was also
recorded using a Secchi disk to the nearest 0.05 m.

Integrated water sample (in situ). All data collectors constructed a simple device, known as the
“Anaconda”, using a stoppered hose of the correct length in order to acquire the epilimnetic sample. The
hosepipe was lowered with the bottom end open into the water column until the right depth (see above).
When the hosepipe was vertical and the water level was visible at the surface layer of the hosepipe then
the stopper was inserted to create hydrostatic pressure. The bottom end of the hosepipe was pulled-up
with a rope to the surface to collect the sample in a bucket. The diameter of the hosepipe was appropriate
to sample the required water volume (about 5–10 L for hypertrophic and eutrophic, 15–30 L for
mesotrophic and oligotrophic lakes) for the analyses, in an acceptable number of runs. The first three
sampling runs served the purpose of rinsing the hosepipe, the sampling bucket and the plastic rod. The
subsequent runs were the water sample taken for analysis. The water sample in the bucket was mixed
adequately before being divided into different bottles for further processing prior to analysis.

All samples were shipped frozen using dry ice in Styrofoam boxes. Shipping and storage of the EMLS
samples was centralized at the University of Wageningen (The Netherlands). There, samples were sorted
and sent to the dedicated laboratories for further analysis. Each of the nutrients, pigments and toxins
analyses were done in one dedicated laboratory, by one operator on one machine, to minimize analytical
errors and maximize integration of the datasets. Specifically, the nutrients, microcystins and nodularin
analyses were done at the University of Wageningen, the pigment analysis at the University of
Amsterdam and the cylindrospermopsin and anatoxin analysis at the German Environment Agency.

Total and Dissolved Nutrients (laboratory). For analyses of total phosphorus (TP_mgL, Table 1) and
nitrogen (TN_mgL, Table 1), unfiltered water subsamples of 50 mL were stored in -20 °C until shipping.
For dissolved nutrients: orthophosphate (PO4_ugL, Table 1), nitrite/nitrate (NO3NO2_mgL, Table 1)
and ammonium (NH4_mgL, Table 1), a volume of 250 mL was filtered through 47mm Glass fibre filters
(GF/C or GF/F or similar), the filtrate was sampled in a PE bottle and stored at −20 °C. Before the
collection of the nutrient samples, all polyethylene collection bottles with their screw caps were acid
washed overnight in 1M HCl and rinsed with demineralized water and lake water before collection.
Nutrients were measured according to Dutch NEN standards, using a Skalar SAN+ segmented
flow analyser (Skalar Analytical BV, Breda, NL) with UV/persulfate digestion integrated in the system.
The total phosphorus and orthophosphate were analysed conforming NEN29, the ammonium and
total nitrogen according to NEN30 and the nitrite/nitrate following NEN31. The limit of detection was
0.02 mg/L for total phosphorus and ammonium, 0.2 mg/L for total nitrogen, 0.01 mg/L for nitrite/nitrate
and 0.004 mg/L for orthophosphate.
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Column name Description Explanation or format or unit

Lake_ID A code given to each studied lake e.g. TR_BEY_I,

TR = country code (Turkey),

BEY = three first letters of lake name (Lake Beysehir),

I = if more than one lake basins were sampled

Date Date of sample collection YYYY-MM-DD

LakeName Name of lake that is commonly used Name

LabName The name of the laboratory that organized the local sampling Name

Country Geographic location of lake Name

Latitude Latitude coordinate of lake Decimal degrees (WGS84)

Longitude Longitude coordinate of lake Decimal degrees (WGS84)

Altitude_m Elevation of lake surface relative to sea level Metres

MaximumDepth_m Maximum depth of lake Metres

MeanDepth_m Mean depth of lake Metres

SecchiDepth_m Secchi depth reading Metres

SamplingDepth_m Depth of sample collection Metres

(lower limit of the sampling interval)

ThermoclineDepth_m Location of the thermocline Metres

NA signifies a non-stratified lake (no thermocline detected)

SurfaceTemperature_C Lake water temperature at 0.5 m depth Degrees Celsius

EpilimneticTemperature_C Averaged lake water temperature from surface until bottom of the thermocline Degrees Celsius

TP_mgL Concentration of total phosphorus Milligrams per litre

TN_mgL Concentration of total nitrogen Milligrams per litre

NO3NO2_mgL Concentration of nitrates and nitrites (dissolved nutrients) Milligrams per litre

NH4_mgL Concentration of ammonia (dissolved nutrients) Milligrams per litre

PO4_ugL Concentration of ortho-phosphate (dissolved nutrients) Micrograms per litre

Chlorophylla_ugL Concentration of photosynthetic pigment chlorophyll-a Micrograms per litre

Chlorophyllb_ugL Concentration of photosynthetic pigment chlorophyll-b Micrograms per litre

Zeaxanthin_ugL Concentration of photosynthetic pigment zeaxanthin Micrograms per litre

Diadinoxanthin_ugL Concentration of photosynthetic pigment diadinoxanthin Micrograms per litre

Fucoxanthin_ugL Concentration of photosynthetic pigment fucoxanthin Micrograms per litre

Diatoxanthin_ugL Concentration of photosynthetic pigment diatoxanthin Micrograms per litre

Alloxanthin_ugL Concentration of photosynthetic pigment alloxanthin Micrograms per litre

Peridinin_ugL Concentration of photosynthetic pigment peridinin Micrograms per litre

Chlorophyllc2_ugL Concentration of photosynthetic pigment chlorophyll-c2 Micrograms per litre

Echinenone_ugL Concentration of photosynthetic pigment echinenone Micrograms per litre

Lutein_ugL Concentration of photosynthetic pigment lutein Micrograms per litre

Violaxanthin_ugL Concentration of photosynthetic pigment violaxanthin Micrograms per litre

MC_YR.ugL Concentration of cyanobacterial hepatotoxin microcystin YR Micrograms per litre

MC_dmRR.ugL Concentration of cyanobacterial hepatotoxin microcystin dmRR Micrograms per litre

MC_RR_ugL Concentration of cyanobacterial hepatotoxin microcystin RR Micrograms per litre

MC_dmLR_ugL Concentration of cyanobacterial hepatotoxin microcystin dmLR Micrograms per litre

MC_LR_ugL Concentration of cyanobacterial hepatotoxin microcystin LR Micrograms per litre

MC_LY_ugL Concentration of cyanobacterial hepatotoxin microcystin LY Micrograms per litre

MC_LW_ugL Concentration of cyanobacterial hepatotoxin microcystin LW Micrograms per litre

MC_LF_ugL Concentration of cyanobacterial hepatotoxin microcystin LF Micrograms per litre

NOD_ugL Concentration of cyanobacterial hepatotoxin nodularin Micrograms per litre

CYN_ugL Concentration of cyanobacterial cytotoxin cylindrospermopsin Micrograms per litre

ATX_ugL Concentration of cyanobacterial neurotoxin anatoxin-a Micrograms per litre

Table 1. Column names, column description and explanation/format or unit for each feature of the
lake file.
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Pigment analysis (laboratory). For pigment analysis, a volume of 50–250 mL for hypertrophic and
eutrophic lakes and 500–1000 mL for mesotrophic to oligotrophic lakes was filtered through 47mm glass
fibre filters (GF/C or GF/F or similar) using a filtration device. Filters were stored at −20 °C in the dark
until shipping. The analysis of pigments was modified from the method described by Van der Staay
et al.32. All filters were freeze dried for 6 h. Filters were cut in half, placed in separate Eppendorf tubes,
and kept on ice until the end of the extraction procedure. In each tube, 600 μl of 90% acetone were added
with a small amount of 0.5 mm glass beads. To extract the pigments from the phytoplankton cells, filters
were placed on a bead-beater for one minute. To increase the extraction yields, samples were placed in an
ultrasonic bath for ten minutes. This procedure was repeated twice to ensure a complete extraction of the
total pigment content of the filters. To achieve binding of the pigments during the High-Performance
Liquid Chromatography (HPLC) analysis, 300 μl of a Tributyl Ammonium Acetate (1.5%) and
Ammonium Acetate (7.7%) mix were added to each tube. Lastly, samples were centrifuged at 15, 000 rpm
at 4 °C for ten minutes. 35 μl of the supernatant from both Eppendorf tubes of a filter were transferred
into an HPLC glass vials. Pigments were separated on a Thermo Scientific ODS Hypersil column (250
mm × 3mm, particle size 5 μm) in a Shimadzu HPLC machine and using a KONTRON SPD-M2OA
diode array detector. We identified 12 different pigments (chlorophyll-a, chlorophyll-b, zeaxanthin,
diadinoxanthin, fucoxanthin, diatoxanthin, alloxanthin, peridinin, chlorophyll-c2, echinenone, lutein and
violaxanthin, Table 1) based on their retention time and absorption spectrum and quantified by means of
pigment standards. The limit of detection (LOD) and for a 250 mL sample was: 0.094 μg/L for
chlorophyll-a, 0.061 μg/L for chlorophyll-b, 0.034 μg/L for zeaxanthin, 0.053 μg/L for diadinoxanthin,
0.067 μg/L for fucoxanthin, 0.029 μg/L for diatoxanthin, 0.023 μg/L for alloxanthin, 0.085 μg/L for
peridinin, 0.028 μg/L for chlorophyll-c2, 0.031 μg/L for echinenone, 0.027 μg/L for lutein and 0.075 μg/L
for violaxanthin. The limit of quantification (LOQ) and for a 250 mL sample was: 0.315 μg/L for
chlorophyll-a, 0.202 μg/L for chlorophyll-b, 0.115 μg/L for zeaxanthin, 0.177 μg/L for diadinoxanthin,
0.224 μg/L for fucoxanthin, 0.098 μg/L for diatoxanthin, 0.077 μg/L for alloxanthin, 0.284 μg/L for
peridinin, 0.093 μg/L for chlorophyll-c2, 0.104 μg/L for echinenone, 0.089 μg/L for lutein and 0.250 μg/L
for violaxanthin. In the cases where no pigment signal was detected, the respective pigment was
considered absent and noted as 0 μg/L in the dataset. If the calculated pigment concentration in the
dataset is above the limit of detection (qualitatively detected signal) but below the quantification limit
(too small to quantify), we suggest the assignment of a very small value of half the detection limit to
enable the inclusion of these samples in statistical analyses (if applicable). Alternatively, other statistical
approaches that account for data censoring can be followed based on the research question and the
statistical analysis followed (for suggestions see33).

Cyanotoxin analysis (laboratory). For toxin analyses, a volume of 50–250 mL for hypertrophic and
eutrophic lakes and 500-1000 mL for mesotrophic to oligotrophic lakes, was filtered through 47 mm Glass
fibre filters (GF/C or GF/F or similar) using a filtration device. Filters were stored at −20 °C until
shipping. In the laboratory, frozen filters were transferred to 8 mL glass tubes and freeze-dried (Alpha 1-2
LD, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). The freeze-dried
filters were used for the Liquid Chromatography with tandem Mass Spectrometry detection (LC-MS/MS)
analysis of microcystins, nodularin, cylindrospermopsin and anatoxin as described below. In the
cases where no toxin signal was detected, the respective toxin was considered absent and noted as 0 μg/L
in the dataset. A similar approach as in the section “pigment analysis” can be followed for toxin
concentrations in the dataset that fall above the detection limit but below the quantification limit, as
we did in23.

Microcystins and nodularin analysis (laboratory). For the extraction of microcystins and nodularin,
2.5 mL of 75% hot methanol – 25% ultrapure water (v/v) was added to the freeze-dried filters, which were
then sealed with a screw cap and placed for half an hour at 60 °C. Subsequently, the extract was
transferred to a clean 8 mL glass tube. This extraction procedure was performed three times for each
filter. The supernatants of the repeated extraction procedure were combined to a final volume of 7.5 mL
and then dried in a Speedvac (Thermo Scientific Savant SPD121P, Asheville, NC, USA). After that, the
extracts were reconstituted in 900 μL 100% MeOH. The reconstituted samples were transferred into 2 mL
Eppendorf vials with a 0.22 μm cellulose-acetate filter and centrifuged for 5 min at 16, 000 × g (VWR
Galaxy 16DH, Boxmeer, Netherlands). Filtrates were transferred to amber glass vials for the analysis.

The LC-MS/MS analysis was performed on an Agilent 1200 LC and an Agilent 6410A QQQ
(Waldbronn, Germany). The extracts were separated using a 5 μm Agilent Eclipse XDB-C18 (4.6 mm,
150 mm column, Agilent Technologies, Waldbronn, Germany) at 40 °C. The mobile phase consisted of
Millipore water (v/v, eluent A) and acetonitrile (v/v, eluent B) both containing 0.1% formic acid at a flow
rate of 0.5 mL/min with the following gradient program: 0–2 min 30% B, 6–12 min 90% B, with a linear
increase of B between 2 and 6 min and a 5 min post run at 30% B (as described in32). The injection
volume was 10 μl. Identification of the eight MC variants (MC_dmRR, MC_RR, MC_YR, MC_dmLR,
MC_LR, MC_LY, MC_LW and MC_LF, Table 1) and nodularin (NOD) was performed in the positive
Multiple Reaction Monitoring (MRM) with the following transitions: MC_dmRR 512.8 m/z [M + H]+

to 135.1 quantifier, MC_RR 519.8 m/z [M + H]+ to 135.1 quantifier, MC_YR 523.3 m/z [M + H]+ to
135.1 quantifier, MC_dmLR 491.3 m/z [M + H]+ to 847.6 quantifier, MC_LR 498.3 m/z [M + H]+
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to 135.1 quantifier, MC_LY 868.4 m/z [M + H]+ to 163.0 quantifier, MC_LW 891.5 m/z [M + H]+ to
163.0 quantifier, MC_LF 852.5 m/z [M + H]+ to 163.0 quantifier and NOD 825.5 m/z [M + H]+ to 135.1
quantifier34. Mass spectrometric settings are given in35. Each MC variant was quantified against a
calibration curve. The calibration curves were made using certified calibration standards obtained from
DHI LAB Products (Hørsholm, Denmark). The limit of detection (LOD) and quantification (LOQ) for a
250 mL sample was: 0.0489 μg/L for MC_dmRR, 0.0358 μg/L for MC_RR, 0.0050 μg/L for MC_YR,
0.0054 μg/L for MC_dmLR, 0.0086 μg/L for MC_LR, 0.0817 μg/L for MC_LY, 0.0531 μg/L for MC_LW,
0.0206 μg/L for MC_LF and 0.0048 μg/L for NOD.

Cylindrospermopsin and anatoxin analysis (laboratory). For the extraction of cylindrospermopsin
(CYN, Table 1) and anatoxin-a (ATX, Table 1), 1.5 mL of 0.1% formic acid was added to the freeze-dried
filters. Filters were sonicated for 10 min, shaken for 1 hour and then, centrifuged. This extraction
procedure was repeated two more times and the combined supernatants were dried in a Speedvac
(Eppendorf, Germany). Prior to analysis the dried extracts were re-dissolved in 1 mL 0.1% formic acid
and filtered (0.2 μm, PVDF, Whatman, Maidstone, UK).

LC-MS/MS analysis was carried out on an Agilent 2900 series HPLC system (Agilent Technologies,
Waldbronn, Germany) coupled to a API 5500 QTrap mass spectrometer (AB Sciex, Framingham, MA,
USA) equipped with a turbo-ion spray interface. The extracts were separated using a 5 mm Atlantis C18
(2.1 mm, 150 mm column, Waters, Eschborn, Germany) at 30 °C. The mobile phase consisted of water
(v/v, eluent A) and methanol (v/v, eluent A) both containing 0.1% formic acid, and was delivered as a
linear gradient from 1% to 25% B within 5 min at a flow rate of 0.25 mL/min. The injection volume was
10 μL. Identification of CYN and ATX was performed in the positive MRM mode with the following
transitions: CYN m/z 416.1 [M + H]+ to 194 (quantifier) and 416.1/176, and ATX m/z 166.1 [M + H]+ to
149, 166.1/131, 166.1/91, 166.1/43 (quantifier). Mass spectrometric settings are given in36. Certified
reference standards were purchased from National Research Council (Ottawa, ON, Canada). The limit of
detection (LOD) for both ATX and CYN was 0.0001 μg/L and the limit of quantification (LOQ) was
0.0004 μg/L for a 250 mL sample.

Code availability. Custom-made codes in R 3.3.337. were used to combine the datasets, trace missing
data and inconsistencies. The codes are available in Zenodo: https://zenodo.org/record/1219878#.
Wtcc4S5ubRZ

The GeoNode open source platform version 2.0 has been used for sharing the EMLS datasets among
the partners. GeoNode is a web-based application that facilitates the visualization, download, sharing, and
collaborative use of geospatial data through web services. GeoNode can be easily obtained at http://
geonode.org/ as it is freely available under a GNU General Public License.

QGIS 2.18 Las Palmas was used for creating, managing and uploading the ESRI shapefile layers into
the GeoNode platform.

Data Records
The final dataset includes all lake, environmental, nutrient, pigment and toxin data in one data table. The
description of each feature in the table can be found in Table 1. The data table is made freely available as a
static copy, through direct download from the online Environmental Database Initiative (EDI) and it is
provided under the name “EMLSdata_10Aug_afterRev_dateformated.csv” (Data Citation 1).

The data table is also available at the GeoNode platform (http://gleon.grid.unep.ch/), where it can be
downloaded through the provided web services that secure accessibility to data by using interoperable
standards as provided by the Open Geospatial Consortium (OGC). The OGC- compliant web services
available are 1. the Web Map Service (WMS 1.1.1) and 2. the Web Map Tile Service (WMTS 1.0.0) for
accessing the maps; 3. the Web Feature Service (WFS 1.1.0) for accessing vector data and 4. Catalogue
Service for the Web (CSW 2.0.2) to access the metadata. These interoperable web service endpoints
enable the user to easily access and/or integrate these datasets in their desktop, web-based client, or own
workflows.

The user can find and download several features of the data table as vector layers under the tab
“Layers”. In the interactive tab “Maps”, the user can visualise and download datasets of combined
“Layers”, or create their own maps using the available layers. The vector layers are provided in several
formats such as: ESRI shapefile, Geography Markup Language (GML) and Keyhole Markup Language
(KML), JPEG, pdf etc.

Both the database and the GeoNode platform can be easily updated with the expected data from DNA
and flowcytometry analysis (to follow). As new surveys may be organized following the protocols of this
paper, this data can also be easily included in the database and GeoNode platform.

Technical Validation
All data received from field observers (i.e. data in the tables: Lake Data & Metadata, Sampled data and
depth profiles) were checked by a data curator before uploaded into the database.
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Tracing missing data
Participating data collectors provided a field datasheet and a metadata sheet for each lake. All sheets for
each sampling event and lake metadata which did not have matching records were double checked, and
errors were corrected when found. A custom-made code generated proofing reports for each table,
highlighting which lakes or basins had missing data.

Location data
All latitude and longitude records for each lake were verified by checking visually the provided locations
on google maps. Lakes were marked as verified under the following conditions: (1) the location on google
maps, using either satellite or map view, was found for a lake which matched the provided name, (2) the
location on google maps was located close to a water body (approximately 1 km or closer) with a
matching name, (3) the location was in or beside a lake which had no name or a different name, but the
name provided matched with names of regions in the area (i.e. this represents cases where lakes were
named according to their closest city, or region), or (4) the provided location was near an unnamed lake
in the correct country where there were no other lakes nearby. All other cases were considered unverified
and the data collectors were contacted to provide the right location (Latitude and longitude in decimal
degrees; WGS84).

Laboratory Analyses
The nutrient, pigment and toxin concentrations were analysed centrally by certified laboratories that have
optimized those specific analytical methods. Given that, these data are assumed to be correct.
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