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Abstract The increasing proliferation of cyanobacterial
blooms prolongs the impact of cyanobacteria on aquatic fau-
na, potentially altering trophic relationships. We hypothesized
that any effect of dissolved microcystins (toxins produced by
cyanobacteria) on plankton assemblages would be more evi-
dent in artificial reservoirs and ponds than in natural ones. The
concentrations of dissolved microcystins in the waters we
studied ranged widely from 0.07 to 0.81 μg/L. We showed
that the artificial ponds were subjected to more frequent and
longer-lasting harmful algal blooms. The plankton occurring
in themwere exposed to significantly higher concentrations of
dissolved microcystins than those in natural oxbow lakes.
Using a general linear model (GLM) regression, our study
identified a significant relationship between dissolved
microcystins and both the density and biomass of particular
zooplankton groups (ciliates, rotifers, cladocerans, copepods).
The density, biomass, and richness of the animal plankton
were significantly lower in the artificial ponds than in the
natural oxbow lakes. The impact of microcystins and the
length of time that they remained in the water caused structur-
al homogenization of the plankton.
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Introduction

Growing en masse in water, cyanobacteria create a phe-
nomenon known as cyanobacterial blooms. Local and
global warming and increasing anthropogenic eutrophica-
tion and pollution of water have led to the proliferation of
harmful algal blooms (HABs) that show accelerated and
prolonged activity [1]. Because BcyanoHABs^ are toxic,
cause hypoxia, decrease biodiversity, and disrupt food
webs [2, 3], they present a serious threat to water
ecosystems.

The most threatened ecosystems are those in small, shal-
low reservoirs, ponds, and oxbow lakes, which are biodi-
versity hotspots, serve as water migration corridors, diver-
sify the landscape, and provide habitats for many rare and
valuable species [4–6]. Because they are naturally eutro-
phic , these types of waterbodies natura l ly host
cyanobacterial blooms, but the increasing proliferation of
such blooms adds a new factor: it prolongs the impact of
cyanobacteria on aquatic fauna, potentially altering trophic
relationships, damaging these exceptionally important eco-
systems, and compromising their ecosystem services.

Cyanobacteria change trophic interactions through sev-
eral mechanisms. First, they are a poor food source due to
their large size, low digestibility [7] and lack of long-
chain polyunsaturated fatty acids (PUFAs) [8]. Second,
they produce toxins. The most common of the several
types of cyanotoxins are microcystins. Microcystins are
produced by and retained in cyanobacterial cells during
the growth and stationary phases of blooms [9]. When
the blooms decay and their cells deteriorate, metabolites
are released, raising the concentration of toxins in the
water. The presence of microcystins is reported in 50 to
90% of samples taken during bloom events [10]. Toxins
released in the water can remain there for up to 3 weeks
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[11], causing harm even after the cyanobacteria are gone.
More than 100 microcystin analogues are known [12].
The analogues differ in toxicity; microcystin-LR (MC-
LR) has been found to be the most toxic one, followed
by microcystin-YR (MC-YR) and microcystin-RR (MC-
RR) [13]. It is well known that microcystins harm humans
and other mammals by altering cell metabolism and trig-
gering a cascade of events that leads to cell necrosis or
apoptosis [14]. Such effects do not require direct contact
with cyanobacteria cells and occur even if the toxins can-
not readily diffuse across the plasma membrane. There is
evidence that hydrophobic toxins (e.g., MC-YR) can af-
fect membranes that have packing defects [15]. Some hy-
drophobic microcystins can, by pinocytosis, penetrate the
cell along with other material associated with the plasma
membrane [16].

Dissolved cyanobacterial toxins released during bloom
decay have negative effects on feeding and on the growth
of fish larvae [17]. Cyanotoxins may be transferred to
higher trophic levels through primary consumers such as
protozooplankton [18] and metazooplankton [19].
Relatively little is known about the response of plankton
to toxins, especially to dissolved toxins. It is difficult to
draw conclusions about the processes and relationships
that operate during CyanoHAB events, and effects mea-
sured in the laboratory may not always mirror the natural
processes that occur in the field [20].

Finally, cyanotoxins may harm humans following
chronic exposure to low concentrations of microcystins
via consumption of contaminated water and food (e.g.,
agricultural products, fish, prawns, mollusks), dermal ex-
posure, and inhalation [14].

Some species feed on cyanobacteria and are exposed to
the toxins present in cyanobacterial cells. Many more spe-
cies are exposed to cyanotoxins dissolved in the water. It
is ever more important to understand how the presence of
dissolved microcystins affects the structure and trophic
network of plankton communities. Some field and labora-
tory studies have shown that toxins dissolved in the water
affect the protozooplankton and metazooplankton living
there [21–23].

Protozooplankton and metazooplankton organisms are
basic and critical parts of the food web in aquatic ecosys-
tems, able to transfer carbon to higher levels [24]. We
studied the effect of dissolved microcystins on the shape
of protozooplankton and metazooplankton assemblages in
small waterbodies. With increasing anthropopression, we
will see further proliferation of CyanoHABs. We need to
know exactly how plankton assemblages will be affected
by those blooms. For this study, we postulated that the
effect of dissolved microcystins on plankton assemblages
would be more pronounced in artificial waterbodies than
in natural ones.

Material and Methods

Study Area and Materials

This study used samples from four waterbodies in which
cyanobacterial blooms occur: two natural oxbow lakes
(Piekary, P; Tyniec, T) formed by the Vistula River and two
artificial ponds (Podkamycze 1, P1; Podkamycze 2, P2)
(Fig. 1). All the studied waterbodies are relatively small, cov-
ering 1.56–17.28 ha and ranging in maximum depth from 2.5
and 4.0 m. They all are classified as eutrophic [25] and are
near each other, so their weather conditions are very similar.

Sampling Procedure

Samples were collected from the central point of each
waterbody between May and October 2014. Sampling was
done each month before cyanobacterial blooms formed and
then each week during bloom events. In total, 64 sample sets
were collected for biological analyses (cyanobacteria, ciliates,
metazooplankton) and to determine the concentration of
microcystins in the water. Because the studied oxbow lakes
are shallow and polymictic, they were not stratified into epi-
limnion, metalimnion and hypolimnion.

Although, the Ruttner sampler is not a perfect device for
quantifying zooplankton abundance [26, 27], but it is broadly
use in ecological studies [28]; therefore, we decided to use it.

Fig. 1 Locations of the studied waterbodies
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Samples were taken at 1 m depth using a 5-L Ruttner sampler
and were concentrated from 10 L with plankton nets (mesh sizes
10 μm for cyanobacteria and ciliates; 50 μm for
metazooplankton). Immediately after collection, the samples
were fixed for quantitative analyses (with Lugol’s solution for
algae and ciliates; with 4% formaldehyde for metazooplankton).
Additional fresh (not fixed) samples were concentrated as de-
scribed above, and the live material was taken for species com-
position analysis. See [24] for the keys used for taxonomic iden-
tification of cyanobacteria. The living ciliates were identified in
1 mL chambers with glass covers, according to [28] and [29],
and their density was averaged from three counts. Total biomass
of ciliates was calculated according to [30–33].

Metazooplankton samples were analyzed in 0.5 mL cham-
bers, and their density was calculated as means of five counts.
The keys we used for identification of animal species are listed
in [23]. Dry weight was calculated by a regression equation
defining the body length and weight of each species (see [23]
for references). Because the phytoplankton and ciliates were
calculated as fresh biomass, zooplankton dry mass was
recalculated according to the index proposed by [34]. All mi-
croscopy of phytoplankton, ciliates, and metazooplankton
employed a Nikon H550L light microscope at × 40–× 1000.

Toxin Analysis

Microcystin concentrations (analogues:MC-LR,MC-RR,MC-
YR) were determined by high-performance liquid chromatog-
raphy (HPLC) using an Agilent 1100 apparatus with a diode
matrix (DAD) in the Central Laboratory of theMunicipalWater
and Sewage Company in Krakow, Poland [35].

Statistical Analysis

The Mann-Whitney U test was used to ascertain the statistical
significance of differences between the artificial ponds and
natural oxbow lakes. The factors analyzed included the
microcystin concentrations and the population parameters
for the protozooplankton (Ciliata), metazooplankton, and par-
ticular groups of metazooplankton (Cladocera, Copepoda,
Rotifera). Canonical correspondence analysis (CCA;
constrained ordination) was applied to analyze the effect of
type of waterbody on species composition; the same weight
was given to each species in the analysis, regardless of the
count of a given species in the samples.

We applied a set of generalized linear models (GLMs) to
determine whether the density and biomass of the
protozooplankton and metazooplankton depended on the dis-
solved microcystins, using Poisson error distributions for the
density and biomass data from the different plankton groups.
GLM residuals were graphically examined to test the model
assumptions (residual distribution, independence, homosce-
dasticity). Finally, we used partial residual plots to visualize T

ab
le
1

B
as
ic
in
fo
rm

at
io
n
ab
ou
tt
he

ty
pe

of
w
at
er
bo
dy
,c
ya
no
ba
ct
er
ia
lb

lo
om

s,
an
d
m
ic
ro
cy
st
in

co
nc
en
tr
at
io
ns

Pi
ek
ar
y

Ty
ni
ec

Po
dk
am

yc
ze

1
Po

dk
am

yc
ze

2

G
eo
gr
ap
hi
ca
l

co
or
di
na
te
s

50
°
00
′5
0.
1″

N
,1
9°

47
′3
5.
7″

E
50
°
01
′4
7″

N
,1
9°

49
′3
9.
8″

E
50
°
05
′1
1″

N
,1
9°

50
′0
1.
6″

E
50
°
04
′5
9.
6″

N
,1
9°

50
′0
5.
4″

E

Ty
pe

of
re
se
rv
oi
r

N
at
ur
al

N
at
ur
al

A
rt
if
ic
ia
l

A
rt
if
ic
ia
l

M
ax

de
pt
h
(m

)
4.
0

3.
0

3.
0

2.
5

A
re
a
(h
a)

1.
56

5.
75

16
.8
2

17
.2
8

T
ro
ph
ic
cl
as
s

E
ut
ro
ph
ic

E
ut
ro
ph
ic

E
ut
ro
ph
ic

E
ut
ro
ph
ic

Pe
ri
od

of
bl
oo
m

Fr
om

A
ug
us
tt
o
O
ct
ob
er

Fr
om

A
ug
us
tt
o
O
ct
ob
er

F
ro
m

M
ay

to
N
ov
em

be
r

Fr
om

M
ay

to
N
ov
em

be
r

Sp
ec
ie
s
cr
ea
te
d

bl
oo
m
s

O
sc
ill
at
or
ia

te
nu
is
,D

ol
ic
ho
sp
er
m
um

pl
an
ct
on
ic
um

,D
.s
pi
ro
id
es
,M

ic
ro
cy
st
is

w
es
en
be
rg
ii

A
ph
an
oc
ap
sa

sp
.,
M
ic
ro
cy
st
is
ae
ru
gi
no
sa
,M

.i
ch
ty
bl
ab
e,

M
.w

es
en
be
rg
ii,

W
or
on
ic
hi
an
ia

na
eg
el
ia
na
,

A
ph
an
iz
om

en
on

sp
.

A
ph
an
iz
om

en
on

flo
s-
aq
ue

w
ith

M
.a
er
ug
in
os
a

A
ph
an
iz
om

en
on

flo
s-
aq
ue

w
ith

M
.a
er
ug
in
os
a

Pr
es
en
ce

of
m
ic
ro
cy
st
in
s

di
ss
ol
ve
d
in
w
at
er

A
ll
of

O
ct
ob
er

B
eg
in
ni
ng

of
Se
pt
em

be
r
an
d
en
d
of

O
ct
ob
er

F
ro
m

en
d
of

Ju
ne

to
A
ug
us
ta
nd

fr
om

m
id
-S
ep
te
m
be
r
to

en
d
of

O
ct
ob
er

Fr
om

en
d
of

Ju
ne

to
be
gi
nn
in
g
of

A
ug
us
ta
nd

fr
om

m
id
-S
ep
te
m
be
r
to

en
d
of

O
ct
ob
er

C
on
ce
nt
ra
tio

n
of

to
xi
ns

(M
C
to
t)

M
in
.–
m
ax
.=

0.
00
–0
.2
1
μ
g/
L
;

A
vg
.=

0.
07

μ
g/
L
;S

D
=
0.
09

μ
g/
L

M
in
.–
m
ax
.=

0.
00
–0
.2
5
μ
g/
L
;A

vg
.=

0.
03

μ
g/
L
;

SD
=
0.
08

μ
g/
L

M
in
.–
m
ax
.=

0.
00
–0
.6
7
μ
g/
L
;

A
vg
.=

0.
17

μ
g/
L
;

S
D
=
0.
21

μ
g/
L

M
in
.–
m
ax
.=

0.
00
–0
.8
1
μ
g/
L
;

A
vg
.=

0.
19

μ
g/
L
;S

D
=
0.
24

μ
g/
L

Av
g.
av
er
ag
e,
m
ax
.m

ax
im

um
,m

in
.m

in
im

um
,S
D
st
an
da
rd

de
vi
at
io
n

Effect of Microcystins on Proto- and Metazooplankton Is More Evident in Artificial Than in Natural...



significant relationships between the density or biomass of the
protozooplankton and metazooplankton and the dissolved
microcystins. According to [36], both of the methods we used
are good options for spatial modeling of species distributions.

All of our analyzed data were log-transformed. The statis-
tical analyses employed Statistica 12 (descriptive statistics,
Mann-Whitney U test), Past 3.10 (box plots), and Canoco
5.04 (CCA, GLM).

Results

Cyanobacterial Blooms and Microcystins

Cyanobacterial blooms were observed in all four waterbodies.
The blooms persisted for up to 3 months in the two oxbow
lakes (P, T) and for up to 6 months in the two artificial ponds
(P1, P2). Cyanobacterial toxins (microcystins) occurred in the
water of all studied waterbodies but varied in concentration
and duration (Table 1; Fig. 2).

The dissolved microcystin concentrations were highest in the
artificial ponds (P1, P2) and varied the most in P2 (Fig. 2a); the
concentrations were lower and more uniform in the natural ox-
bow lakes (P, T) (Fig. 2b–d). The microcystin forms differed in
their patterns of occurrence: in the artificial ponds, the highest

Fig. 2 a–d Dissolved
microcystin concentrations
(μg/L) in the waterbodies. a
MCtot. b MC-RR. c MC-YR. d
MC-LR. Dark horizontal lines
represent medians; boxes enclose
25th and 75th percentiles

Fig. 3 CCA plot diagram. Composition ofCiliata assemblages, samples,
and waterbodies. The samples are grouped as follows: blue envelope—
Piekary oxbow lake (natural reservoir); black envelope—Tyniec oxbow
lake (natural reservoir); brown and green envelopes—Podkamycze 1 and
2 (artificial ponds). Total variation = 3.24; explanatory variables account
for 4.0%. Eigenvalues for axis 1 = 0.067 and for axis 2 = 0.042.
Permutation test results: on first axis pseudo-F = 1.2, P = 0.81; on all
axes pseudo-F = 0.8, P = 0.836. Explained fitted variation (cumulative)
for axis 1 = 51.94 and axis 2 = 84.33.
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concentration of MC-LR was found in P1 and the highest con-
centration MC-RR and MC-YR in P2 (Fig. 2b–d).

The differences in dissolved microcystin concentrations
between the natural oxbow lakes and the artificial ponds were
statistically significant (for MCtot Mann-Whitney U test,

z = − 3.00 and p < 0.000; for MC-LR Mann-Whitney U test,
z = − 2.43 and p = 0.015).

Zooplankton Structure

The zooplankton organisms were divided into protozooplankton
(Ciliata) and metazooplankton (Cladocera, Copepoda,
Rotifera). We recorded 15 Ciliata taxa and 54 metazooplankton
taxa (see supplementary data). The average number of Ciliata
taxa was lower than the average number of metazoan taxa, but
Spearman rank correlations showed a positive relationship be-
tween the number of Ciliata taxa and the number of
metazooplankton taxa (r = 0.46, p < 0.05).

CCA partially differentiated the protozooplankton of the
natural waterbodies (P, T) from that of the artificial ponds
(P1, P2) along the first axis based on the species composition
of the samples, but those results were not statistically signifi-
cant (Fig. 3).

CCA of the metazooplankton showed differences in spe-
cies composition between the natural (P, T) and artificial (P1,
P2) waterbodies along the first axis based on the species com-
position of the samples. Those differences were statistically
significant (Fig. 4).

Zooplankton vs. Dissolved Microcystins

GLM showed statistically significant negative relation-
ships between the biomass and the density of several zoo-
plankton groups and the concentrations of MCtot and
MC-LR (Tables 2 and 3), but not for MC-RR or MC-YR.

Fig. 4 CCA plot diagram. Composition of metazooplankton
assemblages, samples, and waterbodies. Samples are grouped as
follows: blue envelope—Piekary oxbow lake (natural reservoir);
black envelope—Tyniec oxbow lake (natural reservoir); brown and
green envelopes—Podkamycze 1 and 2 (artificial ponds). Total
variation = 2.74; explanatory variables account for 13.9%.
Eigenvalues for axis 1 = 0.207 and for axis 2 = 0.097. Permutation
test results: on first axis pseudo-F = 4.9, P = 0.002; on all axes
pseudo-F = 3.2, P = 0.002. Explained fitted variation (cumulative)
for axis 1 = 54.29 and axis 2 = 79.81

Table 2 GLM, biomass of protozooplankton, and particular groups of metazooplankton and microcystins (MCtot and MC-LR) dissolved in water

Response variable Predictors Fitted model
deviance

Null
deviance

Model
AIC

Model
test F

p B intercept/MC
tot or MC-LR

s.e. intercept/MC
tot or MC-LR

T value intercept/MC
tot or MC-LR

Total biomass of
Ciliata

MCtot 320.77 348.89 409.54 28.1 < 0.000 1.20/− 3.17 0.09/0.71 12.33/− 4.41

Total biomass of
Ciliata

MC-LR 305.27 330.70 389.57 25.4 < 0.000 1.26/− 4.27 0.09/1.03 13.03/− 4.14

Total biomass of
metazooplankton

MCtot 227.74 260.30 429.18 32.6 < 0.000 2.29/− 1.59 0.05/0.30 41.48/− 5.21

Total biomass of
metazooplankton

MC-LR 226.40 245.93 405.97 19.5 < 0.000 2.19/− 1.81 0.06/0.44 37.27/− 4.06

Biomass of
Copepoda

MCtot 131.33 135.99 285.17 4.7 0.035 1.40/− 0.83 0.08/0.40 16.51/− 2.06

Biomass of
Copepoda

MC-LR 125.63 132.64 265.16 7.0 0.010 1.44/− 1.52 0.08/0.61 16.88/− 2.46

Biomass of
Cladocera

MCtot 315.85 361.06 434.71 45.2 < 0.000 1.51/− 3.66 0.08/0.67 17.99/− 5.44

Biomass of
Cladocera

MC-LR 297.31 313.73 395.70 16.4 < 0.000 1.18/− 3.19 0.09/0.91 11.96/− 3.49

Only statistically significant relationships are show

Effect of Microcystins on Proto- and Metazooplankton Is More Evident in Artificial Than in Natural...



Population Parameters of Proto- and Metazooplankton
Assemblages

The richness, total density, and total biomass of Ciliata
species in the natural oxbow lakes (P, T), having lower
microcystin concentrations, were significantly higher than
in the artificial ponds (P1, P2), having higher microcystin
concentrations (Fig. 5a–c).

The richness and density of metazooplankton species were
significantly higher in waterbodies that had shorter-duration
cyanobacterial blooms and lower microcystin concentrations
(Fig. 6a–c), but total metazooplankton biomass did not show
such a correlation. The natural and artificial waterbodies dif-
fered significantly for biomass of Rotifera (Fig. 6d–f) and

Copepoda (Fig. 6g–i), but surprisingly not for biomass of
Cladocera (Fig. 6j–l).

Discussion

Microcystins are a group of toxins often present in water, as they
are produced by species that commonly occur there (e.g., species
of the generaPlanktothrix,Microcystis,Aphanizomenon,Nostoc,
Anabaena) [37]. In the studied waterbodies, we found three
microcystin analogues: MC-YR,MC-RR, andMC-LR. The first
two occurred at small concentrations, and for them, we found no
significant differences between the waterbodies nor any relation-
ships with plankton parameters. Only dissolved MC-LR was

Table 3 GLM, density of protozooplankton, and particular groups of metazooplankton and microcystins (MCtot and MC-LR) dissolved in water

Response variable predictors Fitted model
deviance

Null
deviance

Model
AIC

Model
test F

p B intercept/
MC tot or
MC-LR

s.e. intercept/
MC tot or
MC-LR

T value
intercept/MC
tot or MC-LR

Total density of
Ciliata

MCtot 17,002,628.19 19,021,611.61 1.7e+
007

2.019e+
006

< 0.000 12.03/− 4.41 0.0004/0.004 27,099.8/− 1103.35

Total density of
Ciliata

MC-LR 16,044,830.96 17,942,766.49 1.605e+
007

1.898e+
006

< 0.000 12.09/− 6.15 0.0004/0.006 27,638.6/− 1050.42

Total density of
Metazooplankton

MCtot 77,365.64 79,328.20 7.782e+
004

1963 < 0.000 7.28/− 0.92 0.005/0.022 1616.07/− 42.12

Total density of
Metazooplankton

MC-LR 75,349.29 76,393.39 7.577e+
004

1044 < 0.000 7.29/− 0.93 0.005/0.030 1611.15/− 30.98

Density of Copepoda MCtot 5339.32 5643.18 5704.77 303.9 < 0.000 5.34/− 0.96 0.012/0.058 451.08/− 16.54

Density of Copepoda MC-LR 4988.59 5366.55 5321.14 378.0 < 0.000 5.38/− 1.57 0.012/0.087 450.06/− 18.08

Density of Cladocera MCtot 3739.79 4301.09 4022.47 561.3 < 0.000 4.50/− 2.50 0.019/0.12 241.49/− 20.51

Density of Cladocera MC-LR 3150.87 3381.86 3398.86 231.0 < 0.000 4.24/− 2.39 0.021/0.175 198.68/− 13.60

Density of Rotifera MCtot 86,520.67 87,833.35 8.694e+
004

1313 < 0.000 7.05/− 0.83 0.005/0.024 1397.82/− 34.62

Density of Rotifera MC-LR 82,454.17 83,053.02 8.283e+
004

598.9 < 0.000 7.08/− 0.764 0.005/0.0326 1408.89/− 23.64

Only statistically significant relationships are shown

Fig. 5 Box plots for a number of species, b total density, and c total
biomass of Ciliata in particular waterbodies. Mann-Whitney U test
showed statistically significant differences between the natural (P, T)
and artificial waterbodies (P1, P2) for all parameters (number of species

z = 4.215, p < 0.000; density z = 4.833, p < 0.000; biomass z = 4.472,
p < 0.000). Dark horizontal lines represent medians; boxes enclose 25th
and 75th percentiles; whiskers represent 5th and 95th percentiles

Kosiba J. et al.



associated with the parameters of the plankton, both
protozooplankton (Ciliata) and metazooplankton. Differences
in hydrophobicity can make microcystins differ in the way that
they are taken up by animals. They may be ingested with food
[38] or may bind to membranes and penetrate cells by pinocyto-
sis [16]. The microcystins affected the plankton animals in dif-
ferent ways in the studied waterbodies. We showed that they
were more harmful to these organisms in the artificial ponds than
in the natural oxbow lakes. There were significant differences in
dissolved MC-LR concentration between the natural and artifi-
cial waterbodies. MC-LR is known to be the most potent toxin
[39]; we infer that the significantly higher and longer-persisting

concentrations of that analogue in the artificial ponds shaped the
structure of the ciliate and metazooplankton assemblages.

Species-specific adaptations in zooplankton have led to
variation of the observed responses to cyanobacteria blooms
[40] and cyanobacterial toxins. In the literature, information
about the response of ciliates [21, 22, 41, 42], rotifers [43, 44],
copepods [20, 45], and cladocerans [46, 47] to cyanotoxins is
contradictory and unclear. Our GLM analyses showed signif-
icant negative correlations between the dissolved microcystins
and both the density and the biomass of Ciliata. Other re-
search indicates that cyanobacterial blooms generally affect
communities of ciliates by lowering their diversity: only a

Fig. 6 Box plots. a Total number
of metazooplankton species
(Mann-Whitney U test z = 5.001,
p < 0.000). b Total density of
metazooplankton (Mann-
Whitney U test z = 5.235,
p < 0.000). c Total biomass of
metazooplankton (not statistically
significant). d Total number of
Rotifera species (Mann-Whitney
U z = 2.039, p = 0.041). e Total
density of Rotifera (Mann-
Whitney U test z = 5.151,
p < 0.000). f Total biomass of
Rotifera (Mann-Whitney U test
z = 4.937, p < 0.000). g Total
number of Copepoda species (not
statistically significant). h Total
density of Copepoda (Mann-
Whitney U test z = 3.314,
p < 0.000). i Total biomass of
Copepoda (Mann-Whitney U test
z = 2.364, p = 0.018). j Total
number of Cladocera species
(Mann-Whitney U test z = 5.077,
p < 0.000). k Total density of
Cladocera (Mann-Whitney U test
z = 3.842, p < 0.000). l Total
biomass of Cladocera (not
statistically significant). Dark
horizontal lines represent
medians; boxes enclose 25th and
75th percentiles; whiskers
represent 5th and 95th percentiles
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few ciliate species were found to develop during the culmi-
nating stage of cyanobacterial blooms [48].

The richness, total biomass, and density of Ciliata species
in particular samples were significantly lower in the two arti-
ficial ponds (P1, P2), where microcystins occurred at signifi-
cantly higher concentrations and remained in the water longer
than in the oxbow lakes (P, T). The composition of Ciliata
assemblages in particular samples was more uniform in the
ponds and assumed a more typical structure in the oxbow
lakes (CCA). That uniformity or homogeneity of Ciliata as-
semblages in the artificial ponds reflects their longer exposure
to dissolved cyanotoxins. The more typical structure of the
assemblages found in the oxbow lakes reflects the operation
of an ecosystem in which toxins are present at lower concen-
trations and for a shorter period.

The response of the metazoan assemblages was similar to
that of the ciliate assemblages. GLM regression showed neg-
ative relationships between dissolved microcystins and both
the density and the biomass of the metazooplankton. We
found significantly fewer species and lower total density of
metazooplankton in the ponds (P1, P2) than in the oxbow
lakes (P, T), but surprisingly we did not find significant dif-
ferences in total biomass.

Since metazooplankton organisms form a heterogeneous
group consisting of various subgroups, we also analyzed data
from particular groups. We found a significant relationship
between microcystins and the density of Rotifera and a de-
crease in the number of species, total density, and total bio-
mass of rotifers in the ponds, which had higher dissolved
microcystin concentrations.

Copepod biomass was also negatively correlated with dis-
solved microcystin concentration. However, copepods are
able to discriminate between toxic and nontoxic cyanobacteria
[44], but they can assimilate toxins directly from the water or
via ciliates [49, 50], and they may adsorb toxins and then
transfer them to higher trophic levels [51]. Analyses of cope-
pod biomass and density showed statistically significant dif-
ferences between the ponds (P1, P2) and the oxbow lakes (P,
T), in line with laboratory studies [45] which showed that an
elevated concentration of microcystins reduced the survival of
Eurytemora affinis.

The relationship between toxins and Cladocera is even
more complicated. It has been demonstrated that Daphnia
species may adapt to the presence of toxins [47]. Small cla-
docerans such as Bosmina may not be sensitive to the effects
of microcystins. Bosmina and Daphnia are species that ingest
toxic cyanobacteria, leading to microcystin accumulation [52,
53] and transferring them to higher trophic levels [54]. In our
study, Cladocera showed significant negative correlations
with microcystins, mainly MC-LR. There were significant
differences in the total density but not the biomass of
Cladocera between the artificial and natural waterbodies: the
oxbow lakes showed higher density of Cladocera species but

their biomass was higher in the ponds. This suggests that the
large cladocerans (Daphnia) in our waterbodies were adapted
to higher concentrations of those toxins.

Conclusion

We demonstrated that in waterbodies with higher and longer-
persisting microcystin concentrations, various parameters
(density, biomass, richness) of the zooplankton population
decreased, and the structure of the species assemblages tended
toward uniformity. The studied artificial ponds were more
exposed to harmful cyanobacterial blooms, and for a longer
period, than the natural oxbow lakes. The general problem can
be expressed in this way: increasing artificiality of the aquatic
environment (transformation, destruction, creation of new
waterbodies) + eutrophication + global warming = increased
proliferation of toxic cyanobacterial blooms + homogeniza-
tion of plankton species structure.
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