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Abstract

Context Connectivity assessments typically rely on

resistance surfaces derived from habitat models, assum-

ing that higher-quality habitat facilitates movement.

This assumption remains largely untested though, and it

is unlikely that the same environmental factors deter-

mine both animal movements and habitat selection,

potentially biasing connectivity assessments.

Objectives We evaluated how much connectivity

assessments differ when based on resistance surfaces

from habitat versus movement models. In addition, we

tested how sensitive connectivity assessments are with

respect to the parameterization of the movement

models.

Methods We parameterized maximum entropy mod-

els to predict habitat suitability, and step selection

functions to derive movement models for brown bear

(Ursus arctos) in the northeastern Carpathians. We

compared spatial patterns and distributions of resis-

tance values derived from those models, and locations

and characteristics of potential movement corridors.

Results Brown bears preferred areas with high forest

cover, close to forest edges, high topographic com-

plexity, and with low human pressure in both habitat

and movement models. However, resistance surfaces

derived from the habitat models based on predictors

measured at broad and medium scales tended to

underestimate connectivity, as they predicted substan-

tially higher resistance values for most of the study

area, including corridors.
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Conclusions Our findings highlighted that connec-

tivity assessments should be based on movement

information if available, rather than generic habitat

models. However, the parameterization of movement

models is important, because the type of movement

events considered, and the sampling method of

environmental covariates can greatly affect connec-

tivity assessments, and hence the predicted corridors.

Keywords Corridors � GPS telemetry � Least-cost

modeling � Maximum entropy � Resistance surface �
Step selection functions � Ursus arctos

Introduction

Landscapes across the globe are increasingly altered

by human activities, causing substantial changes in

habitat composition, configuration, and quality (Ellis

et al. 2010). In fragmented landscapes, species

persistence often depends on habitat connectivity

and gene flow among subpopulations (Fischer and

Lindenmayer 2007). Connectivity can also enhance

resilience to climate change, because ranges of many

species will likely shift (Bellard et al. 2012). Conser-

vation planning thus aims to establish, maintain, and

improve habitat connectivity and movement corridors

(Rudnick et al. 2012).

Habitat connectivity, i.e., the degree to which

landscapes facilitate or impede movement (Taylor

et al. 1993), depends on both, landscape characteristics

and species’ movement ability, which together deter-

mine a landscape’s permeability of movement for a

species. In connectivity assessments, the landscape

permeability is typically represented via a so-called

resistance surface reflecting the local cost of move-

ment for a given species through a particular environ-

ment due to behavioral and physiological factors such

as aversion, energy expenditure, or mortality risk

(Zeller et al. 2012). However, how resistance surfaces

are defined can greatly influence the delineation of

movement corridors, including their length and loca-

tions (Rayfield et al. 2011; Ziółkowska et al. 2014;

Mateo Sánchez et al. 2015a). Defining ecologically

meaningful resistance surfaces is thus critical (Trainor

et al. 2013). Typically, resistance surfaces are derived

by assigning different levels of resistance to land cover

or land use categories, often based on expert opinion,

resulting in resistance surface with discrete cost steps

(Zeller et al. 2012), but many of the environmental

factors influencing movement are continuous (Pflüger

and Balkenhol 2014). Continuous resistance represen-

tations are, therefore, usually considered superior

when representing how an animal experiences a

landscape (Stoddard 2010).

The most common approach for deriving continu-

ous resistance surfaces has been to parameterize a

habitat suitability model (Guisan and Thuiller 2005;

Elith and Leathwick 2009), and then to invert the

habitat suitability index so that higher habitat suit-

ability represents a lower cost for movement. Habitat

models can be derived in a variety of ways, but are

typically based on occurrence records (Elith and

Leathwick 2009). This means that the underlying

assumption of connectivity assessments based on

habitat models is that preferred habitat also allows

for easier movement (LaRue and Nielsen 2008;

Ziółkowska et al. 2012; Trainor et al. 2013). This

assumption remains largely untested though, and it is

unlikely that the same environmental factors deter-

mine both animal movements and habitat selection,

and at the same scales (Roever et al. 2014). This

suggests that different input data, and potentially

different modeling frameworks, should be used when

modeling general habitat selection versus movement

(Naves et al. 2003; Moe et al. 2007; Fernández et al.

2012; Mateo Sánchez et al. 2015a). Understanding

how connectivity assessments are affected by relying

on habitat models to define resistance surfaces is thus

important for efficient corridor planning (Trainor et al.

2013; Elliot et al. 2014; Roever et al. 2014; Mateo

Sánchez et al. 2015a, b).

To date there have been only few empirical studies

that directly compare the ability of habitat suitability

models to capture landscape resistance to movement

against models based on actual movement data. For

example, Mateo Sánchez et al. (2015a, b) compared

resistance surfaces derived from habitat suitability and

genetic-based models. However, while genetic data

provide a synoptic measure of landscape resistance as

they effectively integrate the movements of many

individuals over time (Spear et al. 2010), pathway data

can complement them as they provide unambiguous

spatial representation of how animals move through

the environment to meet their local resource needs

(Zeller et al. 2012). Therefore it is important to

evaluate the performance of pathway data in capturing

resistance to movement against detection data.
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Recent research in telemetry data analysis provides

specific modeling frameworks to study animal move-

ment based on pathway data (Kays et al. 2015). For

example, step selection functions assess animals’

resource selection as they move through the landscape

(Fortin et al. 2005) by comparing the characteristics of

linear segments linking successive animal locations

(‘steps’) with those available in the landscape (Thur-

fjell et al. 2014). Step selection functions have been

successfully applied to investigate the effects of

landscape structure on movement of large ungulates

(Fortin et al. 2005; Coulon et al. 2008; Forester et al.

2009; Leblond et al. 2010; Bjørneraas et al. 2011; van

Beest et al. 2012), carnivores (Dickson et al. 2005;

Roever et al. 2010; Latham et al. 2011; Northrup et al.

2012; Squires et al. 2013), and forest birds (Richard

and Armstrong 2010; Gillies et al. 2014). However,

animals’ steps may reflect different types of behavior

(Bruggeman et al. 2007), some of them active (e.g.,

foraging, walking), while others passive (e.g., bed-

ding, standing; Killeen et al. 2014). Movement models

should focus on steps that represent actual movement,

but to our knowledge, distinction between active and

passive steps has not yet been applied to parametrize

resistance surfaces for corridor design.

Considering movement behavior is particularly

important when assessing landscape connectivity for

large mammals, because of their ability to move large

distances in a relatively short amount of time.

Moreover, large mammal populations require large,

undisturbed habitats, which causes conflicts with

people and land use in human-dominated landscapes.

This makes their conservation challenging (Woo-

droffe 2000; Gordon 2009). This is why we focused on

brown bear (Ursus arctos) as our model species to

investigate habitat selection and movement behavior,

and their relation to landscape connectivity. Brown

bears are widely distributed across the northern

hemisphere and occupy a variety of habitats, from

tundra to temperate forests and even semi-deserts

(Bojarska and Selva 2012). Bears are highly mobile

and roam over large areas, particularly young males

(Swenson et al. 2000). They are also a species of

conservation concern in Europe despite the fact that

their ranges have been relatively stable or even

expanding in recent years, because their long-term

persistence is threatened by habitat loss and fragmen-

tation due to infrastructure and urban development

(Chapron et al. 2014). Therefore it is important to

understand how bears move in order to protect them

and their habitat, especially in the Carpathians, one of

the few places in Europe that holds a large population

of bears, which, however, has been fragmented since

the early twentieth century (Straka et al. 2012;

Chapron et al. 2014).

Our main goal was to investigate how much

resistance and connectivity estimates (including

movement corridors and their characteristics) differ

when based on habitat suitability models versus

movement models derived from movement steps. In

addition, we examined the sensitivity of those differ-

ences to models’ parameterization regarding (1) the

type of movement steps (active versus all), and the

method of measuring environmental covariates (aver-

aged along steps versus measured at endpoints of

steps) used in the movement models, and (2) the scale

of predictor variables used in the habitat models.

Materials and methods

Study area

The Carpathian brown bear population, currently

estimated at 7200 individuals, extends into Slovakia,

Poland, Ukraine, Serbia, and Romania (Chapron et al.

2014). By the end of World War I, strong hunting

pressure, deforestation, and agricultural expansion led

to the dramatic decline and subdivision of the

Carpathian population into a larger, eastern subpop-

ulation and a smaller, isolated, western one (Fernán-

dez et al. 2012; Straka et al. 2012). Although both

subpopulations increased after World War II, it

remains unclear whether they are connected (Straka

et al. 2012).

We focused on the northeastern part of the

Carpathian brown bear population, including two

areas where bears are permanently present (the

Bieszczady Mountains in Poland, and the Poloniny

Mountains in Slovakia), and a potential linkage zone

to the western subpopulation (the Beskid Niski and

Beskid Sądecki Mountains in Poland; Śmietana et al.

2014; Fig. 1). Both the brown bear population in

Poland (\100 individuals) and Slovakia (800–1100

bears) are shared between neighboring countries

(Selva et al. 2011; Chapron et al. 2014). The

Bieszczady Mountains hold most of the brown bears

in Poland (46–61 individuals in 2010; Selva et al.
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2011), but the Poloniny Mountains are inhabited only

by a small part of the brown bear population in

Slovakia (at least 15 bears; Straka et al. 2013).

Brown bear telemetry data

We obtained telemetry data from nine brown bears

(i.e., 15–20 % of the total brown bear population in the

area according to Selva et al. 2011), including three

females (two adults, one sub-adult) and six males (two

adults, three sub-adults, one young individual) in

2008–2009 and 2014–2015 for a total of 57 months

(Figs. 1, 2A). The tracking period for a single bear

varied between 1 and 14 months. Bears were trapped

in box or Aldrich traps and equipped with GPS–GSM

collars (WildCell M collars, Lotek Wireless Inc.,

Canada; GPS-GSM PLUS collars Vectronic, Ger-

many). Locations were recorded every 30 min or 5 h

depending on the GPS device. We removed all fixes

with a dilution of precision [10 (Cargnelutti et al.

2007), fixes located outside of our study area, and

those for which locations were obviously erroneous

(i.e., too far away from previous locations). For further

analysis we used only locations with a 5-h time

interval to ensure an equal sampling density for the

entire tracking period (Nlocations = 4761, median

Nlocations for a bear = 383, GPS-fix success rate

including dilution of precision = 73 %).

Landscape variables

We chose potential predictor variables for the brown

bear habitat and movement models based on previous

studies (Güthlin et al. 2011; Koren et al. 2011;

Fernández et al. 2012; Mateo Sánchez et al. 2013),
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Sądecki Mts

Beskid

Poloniny Mts

Čergov Mts

Carpathians
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Fig. 1 Study area in the northeastern Carpathians. Permanent and sporadic brown bear distribution is shown according to Chapron

et al. (2014)
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and grouped them into land-cover, topography, and

human-associated variables (Table 1; Fig. 2A).

We generated a land cover map with 30-m spatial

resolution (with coniferous, deciduous and mixed

forest, grasslands and shrubs) from five Landsat

satellite images for 2011. To do so, we first segmented

the image, and then conducted a supervised, hierar-

chical classification using a knowledge-based rule-set

to extract training samples and a support vector

machine classifier (Supplementary Fig. S1.1). The

overall accuracy of our classification was 91.3 %

evaluated based on an independent set of validation

points (Supplementary Table S1.1).

In order to classify each forest pixel as either core

forest or edge forest, we applied morphological spatial

pattern analysis to our land-cover map (Vogt et al.

2007), using an edge width of 90 m (3 pixels). In

addition, we separately delineated forest edges bor-

dering grasslands and shrubs (Fernández et al. 2012).

Topographic variables (elevation, elevation range, and

slope) were calculated based on the Shuttle Radar

Topography Mission (SRTM) digital elevation model,
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resampled to 30-m resolution, and settlements and

roads were obtained from the Vector Map (VMap),

level 2 (Table 1). All continuous variables were

linearly rescaled to values between zero and one.

Multiscale habitat models often yield better pre-

dictions than single-scale models (Grand et al. 2004;

Mateo Sánchez et al. 2013). We therefore evaluated all

variables at six scales using circular moving windows

with radii of 0.25, 0.5, 1, 2, 4, and 8 km (99.5 % of

steps with 5-h time-interval were B8 km; Fig. 2A).

For all binary variables (e.g., forest, forest edge), we

calculated the percentage of variable occupancy in the

moving window around every 30-m grid cell, and for

continuous variables (e.g., elevation, distance from

roads) we calculated the mean of variable values in the

moving window around the cell (Table 1). For every

variable we selected the scale at which it was most

significant in the habitat and the movement models

(see below). We evaluated all of the variables in terms

of collinearity, and, if necessary, excluded one

Table 1 Candidate variables that we tested in the movement and habitat models of brown bear in the northeastern Carpathians

Group Variable Description Justification

Land cover Forest Percentage of forest within a certain

distancea
Brown bears are primarily restricted to forest-

dominated areas where they find nutritional and

refuge resources required for maintenance,

hibernation and reproduction (Naves et al. 2003;

Posillico et al. 2004)

Coniferous

forest

Percentage of coniferous forest within a

certain distancea
Forest composition is an important determinant of

brown bear habitat quality due to the high

nutritional requirements of the species, its

dependence on hard and soft mast during

hyperphagia and the need for alternative food

resources throughout the year (Preatoni et al. 2005;

Moe et al. 2007). In the temperate zone, deciduous

forests dominated by hard mast tree species are

especially important for bears during hyperphagia

(Fernández et al. 2012)

Deciduous forest Percentage of deciduous forest within a

certain distancea

Deciduous to

total forest

Deciduous to total forest ratio within a

certain distancea

Mixed forest Percentage of mixed forest within a certain

distancea

Grassland Percentage of grasslands and shrubs within

a certain distancea
Brown bears are known to use a mosaic of open

(meadows) and forested areas (Nielsen et al. 2006;

Moe et al. 2007). In addition forest ecotones can

provide interspersion with habitats where bears can

feed on herbs, bulks, berries and arthropods after

hibernation and during mast shortage (Naves et al.

2006; Bojarska and Selva 2012)

Forest edge Percentage of forest edge (30-m or 90-m

edge width) within a certain distance*

Forest/grassland

ecotone

Percentage of forest/grassland (with

shrubs) ecotone (30-m or 90-m edge

width) within a certain distancea

Topography Elevation Mean elevation (meters) within a certain

distancea
Brown bears prefer landscapes with high

topographic complexity as they provide better

sheltering opportunities, denning sites and

complementary feeding habitats (Nellemann et al.

2007; May et al. 2008; Güthlin et al. 2011)

Elevation range Mean elevation range (meters) within a

certain distancea

Slope Mean slope (degrees) within a certain

distancea

Human Distance from

roads

In kilometers Human activities negatively affect brown bear

habitat due to disturbance and persecution. These

activities may cause bear avoidance and decrease

the quantity and quality of the species habitat

(Nellemann et al. 2007; Martin et al. 2010; Ordiz

et al. 2011). As in general roads facilitate human

access into formerly remote areas and therefore

increase disturbance of bears (Selva et al. 2011),

we included all road categories in our analyses

Density of roads Calculated within a certain distancea

Distance from

settlements

In kilometers

Density of

settlements

Calculated within a certain distancea

a We considered the following distances: 0.25, 0.5, 1, 2, 4, and 8 km
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variable in pairs that had a Pearson correlation

coefficient of 0.65 or greater.

Estimating movement models

To understand how landscape structure affects brown

bear movement, we used step selection functions

combined with case–control (conditional) logistic

regression (Fortin et al. 2005; Coulon et al. 2008;

Squires et al. 2013; Fig. 2B). For each observed step,

we calculated its length (d) and turning angle (a) using

R software (package ‘adehabitat’, v1.8.3; Calenge

2006). Steps were divided into ‘active’ and ‘passive’

based on step length, with all steps C1 km constituting

‘active’ steps (supplementary Fig. S2.1).

Each observed step was paired with five control

steps that shared the same starting point, but differed

either in length, direction, or both (Supplementary

Fig. S2.2). The lengths and turning angles of control

steps of a given individual were sampled from the

observed ones of the other individuals in order to avoid

problems of circularity (Fortin et al. 2005). To test if

movement models were influenced by the random

sampling of control steps, we considered five different

sets of control steps. For each observed and control

step we calculated (1) the average values of predictors

along the step (based on all pixels which were crossed

by a given step line), and (2) the exact values of

predictors at the endpoints of steps (Thurfjell et al.

2014; Fig. 2B).

To select the appropriate scale for each predictor in

our multiscale movement models [Fig. 2B(1)], we

used univariate test of significance (Wilcoxon rank-

sum/Mann–Whitney test) comparing observed and

control steps, and selected the scale with the lowest

p value. We further excluded all the predictors with

p values higher than 0.25 as not differentiating

between observed and control steps.

Spatial and-temporal autocorrelation inherent in

movement data may biased standard errors of the

coefficients estimated by the conditional logistic

regression (Fortin et al. 2005; Craiu et al. 2008). To

account for autocorrelation, we used a modified robust

sandwich estimator, which required dividing observa-

tions into independent clusters. A cluster may consist

of steps that are autocorrelated, as long as steps are

independent among clusters (Fortin et al. 2005).

Because distances among locations of all possible

pairs of individual bears were on average[20 km, and

pairs of bears were located within 100 m from each

other in, on average, less than 1 % of cases, we

considered the steps of individual bears as indepen-

dent from each other. In addition, we investigated

possible patterns of temporal autocorrelation in

deviance residuals of our final regression models

(with steps of individual bears as clusters; Fieberg

et al. 2010) by following the procedure for data with

uneven temporal spacing of Coulon et al. (2008). This

approach involved fitting a variogram to the model

residuals using the time of fixes instead of their

location in geographical space. The resulting vari-

ograms showed no autocorrelation, which means that

temporal autocorrelation in our input data did not

affect the fit of our models.

We constructed two separate movement models,

one model using all steps (movement models with all

steps), and a second model using only active steps

(movement models with active steps), with the

‘survival’ package (version 2.37-7; Therneau 2014)

in R software. For both model types we considered

predictors measured either (1) along steps (averaged),

or (2) at endpoints of steps, which gave as in total four

different brown bear movement models [Fig. 2B(2)].

For each of the five sets of observed and control

steps we first fitted ‘full’ models using all independent

variables selected with the multiscale approach, and

then evaluated submodels consisting of all possible

combinations of those variables using the quasilike-

lihood under the independence model information

criterion value (QIC; Pan 2001), applicable for step

selection functions (Craiu et al. 2008), with the

‘AICcmodavg’ package (version 2.0-3; Mazerolle

2015) in R software. We ranked and selected the best

approximating models using delta QIC values, and

calculated Akaike weights to obtain a measure of

model selection uncertainty. We then averaged logis-

tic coefficients across the five sets of observed and

control steps and mapped brown bear movement

surfaces by spatially applying step selection functions

across the study area using the equation (Fortin et al.

2005):

wðxÞ ¼ expðb1x1 þ b2x2 þ . . .þ bnxnÞ; ð1Þ

where x1 to xn were predictor variables, and b1 to bn
mean selection coefficients. We normalized brown

bear movement surfaces by the sum of all grid cells in

the study area to obtain relative (movement) occur-

rence rates, describing for each cell the relative

Landscape Ecol (2016) 31:1863–1882 1869
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probability that this cell was contained in a collection

of movement samples (Merow et al. 2013). Finally, to

remove the effect of outliers, we included only the

range of relative occurrence rates contained within the

1–99th percentiles of the original movement models.

Predicting bear habitat suitability

We predicted habitat suitability using maximum

entropy modeling (MaxEnt, version 3.3; Phillips

et al. 2006; Fig. 2C), because it is a robust approach

even for small sample sizes, and because it has higher

predictive power than other modeling approaches

(Elith et al. 2006; Wisz et al. 2008). The maximum

entropy algorithm allows to model habitat suitability

based on presence-only records, by contrasting the

distribution of environmental attributes at occurrence

locations with the distribution of the same attributes at

a random selection of background points (Phillips

et al. 2006). For all models runs, we employed a

maximum of 2500 iterations, 10,000 random back-

ground points, a convergence threshold of 0.00001,

and the default regularization settings. We ran ten-fold

crossvalidation and calculated mean relative occur-

rences. To estimate variable importance, we used a

jackknife procedure by measuring the test area under

the receiver operating curve (AUC) for single variable

models and models without the variable as well as gain

changes in the MaxEnt function (Phillips et al. 2006).

In order to correct for potential sampling bias in our

data, we employed a combination of spatial filtering of

occurrence data and restricted background selection

(Kramer-Schadt et al. 2013). First, we reduced the

spatial clumping of occurrence data by randomly

sampling only one record within a radius of 500 m to

avoid clusters of locations (resulting from, for exam-

ple, bears foraging or resting for a longer time). A

radius of 500 m was a good compromise between

receiving a sufficiently large number of locations for

our models (*1000) while at the same time removing

the majority of the spatial clumping in our occurrence

data. To test if model outputs were influenced by the

random sampling of occurrence records, we consid-

ered mean predictions from five different sets of

presence points (mean Nselected locations = 969). Sec-

ond, because sampling background points from very

broad areas can result in overly simplistic model

predictions (Anderson and Burnham 2002; VanDer-

Wal et al. 2009), we took background points only from

the home range of our bears, estimated using mini-

mum convex polygon (Fig. 1), and buffered by

13.2 km because this was the longest movement step

in our dataset.

To select the appropriate scale for each predictor

[Fig. 2C(1)], we created single-variable models and

compared them using the AUC as a measure of relative

variable importance (Golicher et al. 2012; Mateo

Sánchez et al. 2013). For each variable, we selected

the scale with the highest AUC value and excluded all

other scales from further analysis (Mateo Sánchez

et al. 2013). To evaluate how scale optimization

affected the comparison between habitat and move-

ment models, we also created the single-scale habitat

models, i.e. with the same variables but all of them

measured at a single scale. Therefore, we built six

single-scale habitat models, each for one of the

individual scales considered in the study [0.25, 0.5,

1, 2, 4, and 8 km; Fig. 2C(2)]. For all models, we used

only quadratic and hinge features to avoid overfitting

(Elith et al. 2011), and interpreted the raw output as

relative occurrence rates (Merow et al. 2013). Finally,

to remove outliers, we included only relative occur-

rence rates within the 1–99th percentiles of the

original habitat models.

Resistance surfaces and connectivity assessment

To transform habitat and movement models into

resistance surfaces (Zeller et al. 2012), we inverted

and linearly rescaled the original values from 1 (the

lowest resistance) to 100 [the highest resistance;

Fig. 2B(3) and C(3)]. To compare habitat and move-

ment models we assessed the spatial patterns and

kernel density estimations of their resistance values.

Lastly, we investigated the influence of different

resistance surfaces on connectivity by comparing the

spatial locations and characteristics of least-cost paths

(i.e., paths with the minimum cumulative resistance

between habitat nodes), and least-cost corridors (i.e.,

sets of cells for which the cumulative resistance

between habitat nodes falls below a certain, user-

defined threshold) delineated with the Linkage Map-

per Toolkit in ArcGIS 10.2 (Fig. 2B(4), C(4); McRae

and Kavanagh 2011). For each least-cost path, we

calculated its (1) length, (2) ‘effective distance’,

defined as the sum of cost values along the path

multiplied by the grid cell dimensions (vertical/

horizontal or diagonal), and (3) ‘absolute resistance’,
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defined as the ratio of effective distance to length. In

order to compare least-cost paths and corridors among

our models, we used the same set of nodes for all

models. Nodes were those areas with the highest

habitat suitability, calculated using an 8-km neigh-

borhood. We further restricted this set of nodes to the

area of permanent bear presence defined by Chapron

et al. (2014). The least-cost paths and corridors were

only constructed between a given node and its nearest

neighbors (in terms of resistance), assuming that paths

among more distant nodes will pass through nodes that

are in-between.

Results

Movement models

We analyzed a total of 3872 movement steps, of which

36.5 % were classified as active. Our analysis revealed

a substantial sensitivity of movement steps to predic-

tors’ scale. Most land-cover variables as well as

human-related variables (density of roads and settle-

ments) were more strongly related to bear movement

steps at fine scales (i.e., 0.25–0.5 km) than at medium

and broad scales (i.e., 1–8 km) regardless of the type

of movement steps used for the analysis. For slope and

elevation range the relationship depended on the type

of movement steps (fine scales for all steps, medium to

broad scales for active steps), while for elevation it

was strongest at the scale of 1 km regardless of the

type of movement steps used for the analysis

(Table 2).

Our evaluation of alternative submodels consisting

of all possible combinations of independent variables

resulted in several submodels that performed similarly

well (i.e., delta QIC\2). This is why we included in

the final models the set of predictor variables that were

most common in the five top-ranked submodels. In

general, all movement models showed that brown

bears preferentially traversed habitats with a high

percentage of forest in the neighborhood or close to

forest edges, with high topographic complexity, and

with low human pressures, i.e., low density of roads

and settlements, and far from settlements. Further-

more, bears selected mixed forests over forests with a

high share of deciduous trees (Table 2). However,

according to models based on all steps, the movement

probabilities were much more driven by topographic

complexity than land cover characteristics, comparing

to models based on only active steps (Table 2).

Habitat models

Brown bear habitat suitability was also quite sensitive

to the scale of the analysis. For most variables, the

relation to bear habitat suitability was strongest

(highest AUC values) for predictors measured at the

scale of 8 km. Exceptions were the variables density

of mixed forest, grasslands and density of settlements

which were most strongly related to bear habitat

suitability at the scale of 4 km. As a result, the

multiscale habitat model (with a mean AUC of 0.835)

did not differ significantly from the single-scale model

measured at a scale of 8-km, both in terms of

predictive performance (mean AUC of 0.832) and

habitat suitability patterns that were predicted (Pear-

son correlation coefficient of 0.95; Table S3.1). The

single-scale model with variables measured at a scale

of 4 km was also highly correlated with the multiscale

habitat model (Pearson correlation coefficient of 0.88;

Table S3.1), but had much lower AUC values (mean

AUC of 0.806). Single-scale models measured at fine

and medium scales (0.25–2 km) showed both much

lower discrimination ability (mean AUC from 0.731 to

0.785) than the multiscale habitat model, as well as

considerably different patterns of habitat suitability

across the study area (Supplementary Table S3.1).

Similarly to movement models, all our habitat

models showed that brown bears selected forest-

dominated habitats with a high density of forest edges,

high elevation ranges, and low human disturbance

(low density of roads and settlements, and far from

roads and settlements). Bears preferred habitats dom-

inated by mixed forests and forests with a medium

share of deciduous trees, and avoided areas with a high

density of grasslands. Elevation range, density of

settlements and percentage of forest and mixed forest

were the most important predictors, i.e., they

accounted for the highest gain contributions and

decreased test AUC substantially when omitted.

Comparison of resistance estimates

We found considerable differences among resistance

surfaces based on movement (Supplementary

Fig. S3.1) versus habitat models (Supplementary

Fig. S3.2). However the magnitude and spatial pattern
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of these differences depended on models’ parameter-

ization, i.e., the type of steps used (active versus all) in

the movement models, and scale of predictor variables

used in the habitat models. In general, the differences

between habitat and movement models increased with

increasing the scale of predictor variables used in

habitat models, and were highest for the single-scale

habitat model measured at the scale of 8 km (Pear-

son’s correlation coefficient from 0.31 to 0.44 depend-

ing on the movement model; supplementary

Table S3.1), and the multiscale habitat model (Pear-

son’s correlation coefficient from 0.32 to 0.47 depend-

ing on the movement model; supplementary

Table S3.1). Surprisingly, habitat models were

stronger correlated with movement models with active

steps than movement models with all steps, for all

scales (Supplementary Table S3.1). The negative

skewness of distributions of resistance values

increased with increasing the scale of predictors in

habitat models (from around -1.5 for models with

fine-scale predictors to -2.4 for the multiscale habitat

model and -2.6 for the habitat model measured at the

scale of 8 km; Fig. 3).

We found the highest share of high resistance

values for the single-scale habitat models with

predictors measured at broad scales of 4 and 8 km,

and multiscale habitat model, and the lowest share of

high resistance values for the movement models with

active steps and movement model with all steps when

predictors were measured at the endpoints of steps

(Fig. 3). In general, the low resistance values were less

scattered in the habitat models than in the movement

models (Supplementary Fig. S3.3), with the degree of

clumpiness, as measured by the contagion index,

increasing with the scale at which the predictor

variables used in the habitat models were measured

(from 63.1 for the habitat model with predictors

measured at the scale of 0.25 km, to 72.7 for the

multiscale habitat model and 73.36 for the habitat

model with predictors measured at the scale of 8 km),

and only a few big clusters of low resistance values

predicted in the single-scale habitat models with

variables measured at broad scales of 4 km and

8 km, and in the multiscale habitat model [Supple-

mentary Fig. S3.4 (E–G)]. In addition, areas with low

resistance values in the habitat models were limited

mainly to a narrow corridor in Poland, extending from

the Bieszczady, through Beskid Niski to Beskid

Sądecki Mountains (Supplementary Fig. S3.4), while

they extended in the movement models to the Pogórze

Przemyskie in the north-east of the study area

(Supplementary Fig. S3.3), as well as to the Slovak

part of the study area [in case of movement models

with active steps; Supplementary Fig. S3.3 (1A, 2A)].

Comparison of least-cost corridors

We based our delineation of least-cost corridors and

least-cost paths on 17 local maxima evenly distributed

over the whole area permanently inhabited by the

Table 2 Coefficient estimates (b) of the selected variables of the final brown bear movement models

Variable Predictors measured along steps Predictors measured at endpoints of steps

Movement model with

all steps

Movement model with

active steps

Movement model with

all steps

Movement model with

active steps

Scale Mean b Scale Mean b Scale Mean b Scale Mean b

Forest 0.25 km 0.481 0.25 km 0.841 0.25 km 0.345 2 km 0.800

Deciduous to total forest 2 km -2.689 0.5 km -0.765 2 km -1.692 1 km -0.749

Mixed forest 0.5 km 0.384 – – 0.5 km 0.282 0.5 km 0.413

Grassland – – 2 km -2.692 – – – –

Forest edge 0.25 km 0.433 0.25 km 1.429 0.5 km 0.919 0.25 km 0.880

Forest/grassland ecotone – – – – 0.5 km 0.801 0.25 km 0.850

Elevation range 0.25 km 3.767 2 km 0.896 0.25 km 2.061 2 km 0.663

Density of roads 0.25 km -5.911 0.25 km -4.082 0.25 km -2.779 0.25 km -2.142

Density of settlements 0.5 km -5.711 – – 0.5 km -11.953 0.5 km -9.324

Distance from settlements – – – 1.072 – – – –
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brown bears according to Chapron et al. (2014). Of

these local maxima, three were located in the western

part of the study area (one in the Levočské Mountains,

and one in the Čergov Mountains in Slovakia; one in

the Beskid Sądecki Mountains in Poland), eleven in

the eastern part (three in the Poloniny Mountains in

Slovakia; five in the Bieszczady Mountains, two in the

Sanocko-Turczańskie Mountains, and one in the

Pogórze Przemyskie in Poland), and three in the

transition zone of the Beskid Niski in Poland (Figs. 4,

5).

The predicted corridor network differed substan-

tially among our resistance models (Figs. 4, 5).

Corridors generated using resistance surfaces with

higher shares of high resistance values, as in case of

habitat models with predictors measured at medium

and broad scales, tended to be shorter and less

meandering (Fig. 5C–G). Although corridors linking

nodes located in the eastern part of the study area

(within and between the Bieszczady and Poloniny

Mountains, and to the north to Pogórze Przemyskie)

followed similar routes, major functional links con-

necting the western and eastern subpopulations dif-

fered strongly between movement and habitat models

(Figs. 4, 5). These differences depended however on

models’ parameterization, i.e., the method used to

measure environmental covariates (averaged along

steps versus measured at endpoints of steps) in the

movement models, and scale of predictor variables

used in the habitat models. In case of resistance

surfaces based on movement models in which predic-

tors were measured at endpoints of steps [Fig. 4(2A,

2B)] and single-scale habitat models with predictors

measured at fine scales (Fig. 5A, B), corridors linking

subpopulations converged into one main route along

the Beskid Niski Mountains in Poland. In contrast, for

the resistance surfaces based on movement models in

which predictors were measured along steps

[Fig. 4(1)], and habitat models with predictors mea-

sured at medium and broad scales (Fig. 5C–G),

connections showed more extensive networks with

two main routes (one along the Beskid Niski

20 40 60 80 1000
0
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0.10

0.20

with all steps & predictors measured along steps
with all steps & predictors measured at endpoints of steps
with active steps & predictors measured along steps
with active steps & predictors measured at endpoints of steps

Movement models:

20 40 60 80 1000

resistance resistance
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ns

tiy

250 m

500 m
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Single-scale
habitat models:

multiscale
habitat model

4 km

Single-scale habitat models:

250 m
500 m
1 km

multiscale habitat model
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0.15

Fig. 3 Comparison of distribution of resistance values among

habitat and movement models. As distributions of resistance

values did not differ significantly between the single-scale

habitat model with predictors measured at the scale of 8 km and

the multiscale habitat model (Pearson’s correlation coefficient

of 0.95), only density plot for the multiscale habitat model is

shown in the figure
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Mountains and one crossing the Slovak part of the

study area) complemented by several secondary

routes.

In general, least-cost paths generated based on

habitat models with broad-scale predictor variables

had the highest effective distances and absolute

resistances (Supplementary Fig. S3.5) among all our

models. Both effective distances and absolute resis-

tances of least-cost paths increased with increasing the

scale of predictor variables in the habitat models,

however characteristics of least cost-paths generated

based on habitat models with fine-scale predictors

were more comparable to movement models (Supple-

mentary Fig. S3.5). Among movement models, least-

cost paths generated based on models with active steps

were characterized by lower resistances comparing to

models with all steps. The method used to measure

environmental covariates also influenced least-cost

paths’ characteristics, with paths based on movement

models for which predictors were assessed at the

endpoints of steps having lower resistances than paths

based on models for which predictors were averaged

along steps (Supplementary Fig. S3.5). However,

those general patterns were not consistent across the

study area (Fig. 6), and least-cost paths connecting

nodes located within the core habitat area of the

Bieszczady and Poloniny Mountains (e.g., no. 4 and 5

on Fig. 6) had much higher effective distances and

absolute resistances when they were based on move-

ment models with all steps than habitat models.

Discussion

Connectivity assessments are often based on contin-

uous resistance surfaces that are derived from habitat

suitability maps rather than movement data. However,

habitat suitability may not always adequately reflect

1(B)1(A)

2(B)2(A)

0 50 Km25

cumulated resistance

2000000

least-cost paths
nodes

Fig. 4 Least-cost corridors (truncated at cumulative resistance of 200,000) delineated based on movement models with (1) all steps,

and (2) active steps, and predictors variables measured either (A) along steps (averaged), or (B) at endpoints of steps
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(B)(A)

(D)(C)

(E)

0 50 Km25

cumulated resistance

0000020

least-cost paths
nodes

(F)

(G)

Fig. 5 Least-cost corridors (truncated at cumulative resistance

of 200,000) delineated based on unscaled habitat models with

predictors measured at a scale of (A) 250 m, (B) 500 m,

(C) 1 km, (D) 2 km, (E) 4 km, (F) 8 km, and (G) multiscale

habitat model in which the scale of analysis was independently

optimized for each predictor variable (resulted in selection of

predictors measured at broad scales of 4 and 8 km)
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how the environment affects animal movement (Zeller

et al. 2012; Elliot et al. 2014; Roever et al. 2014).

Indeed, we found notable differences in the

connectivity estimates derived from habitat models

versus movement models, confirming that different

environmental factors determined movement
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Fig. 6 Comparison of

(A) effective distances and

(B) absolute resistances of

connections delineated

based on habitat and

movement models.

Characteristics of six

selected strategic

connections are shown only.

The strategic connections

were delineated between

eight nodes scattered over

the whole area permanently

inhabited by the brown bears

in our study area according

to Chapron et al. (2014), and

selected in such a way to

characterize movement

across both habitat areas

(i.e., connections no. 4 and

5), sub-optimal areas (e.g.,

connections no. 2 and 3)
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selection and habitat selection at different scales

(Roever et al. 2014; Mateo Sánchez et al. 2015a). The

magnitude and spatial patterns of these differences

depended on models’ parameterization, i.e., the type

of movement steps (active versus all), and the method

of measuring environmental covariates (averaged

along steps versus measured at endpoints of steps)

used in the movement models, as well as on the scale

of predictor variables used in the habitat models.

Comparing connectivity estimates based on habitat

versus movement models

The resistance surface derived from the multiscale

habitat model likely underestimated connectivity,

because it resulted in substantially higher resistance

values for most of the study area. In addition, least-cost

corridors generated based on this resistance surface

were, on average, shorter and less tortuous, and

characterized by the highest effective distances and

absolute resistances among the models that we com-

pared. More importantly though, our results showed

that the differences between multiscale habitat model

and movement models differed across the study area,

i.e., within optimal and sub-optimal areas. Congruent

with Mateo Sánchez et al. (2015a), who analyzed

movement corridors identified based on a multiscale

habitat model against genetic data, we found that in

areas with low habitat suitability, multiscale habitat

model greatly overestimated resistance compared to

models based on movement data, especially if only

active steps were considered. In such sub-optimal

areas, multiscale habitat model resulted in corridors

with much higher effective distances and absolute

resistances than movement models (Wasserman et al.

2010; Mateo Sánchez et al. 2015a). On the other hand,

in core habitat areas, movement models predicted

comparable (in case of movement models with active

steps) or greater (in case of movement models with all

steps) resistance than the multiscale habitat model,

similar to findings for movement models based on

genetic data (Mateo Sánchez et al. 2015a).

Influence of single versus multiscale habitat

models

Interestingly, we found that major differences in

resistance and connectivity estimates based on habitat

versus movement models were only observed in case

of the habitat models for which predictors were

measured at broad spatial scales (including the mul-

tiscale habitat model). The best performing single-

scale habitat models with predictors measured at

scales of 4 km and 8 km resulted in similar resistance

and connectivity estimates to the multiscale habitat

model, while resistance surfaces based on single-scale

habitat models in which predictors were measured at

much finer scales were much less restrictive. As a

result, networks of corridors based on fine-scale

habitat models were more similar to those based on

movement models. This suggests that the magnitude

of discrepancies in connectivity estimates between the

habitat and movement models is strongly depended on

scale of predictors used to derive those models.

The difference in multiscale versus fine-scale

habitat models in approximating resistance to move-

ment is an important finding, because it suggests that

habitat models can be a useful alternative to

parametrize resistance to movement surfaces. While,

our study confirmed that multiscale habitat models, in

which the scale of the analysis is determined for each

predictor variable separately, outperform single-scale

habitat models (Wasserman et al. 2012; Mateo

Sánchez et al. 2013), our results also showed that this

increase in performance does not necessary coincide

with better estimates of landscape resistance to

movement. The reason for this is likely that movement

through the landscape depends largely on the avail-

ability and use of local resources (Zeller et al. 2012),

while habitat use may be also constrained by broad-

scale patterns (Mateo Sánchez et al. 2013).

Our results have thus important implications when

the goal is to protect movement corridors and plan

conservation actions. We recommend, wherever pos-

sible, to conduct connectivity analyses based on actual

movement data such as pathway or genetic data, and to

use species distribution models based on detection

data to predict probable habitat and derive patches

suitable for resident populations (Squires et al. 2013;

Mateo Sánchez et al. 2015a). However, if movement

data are not available, habitat models with predictors

measured at fine scales can be a proxy to derive

resistance to movement surfaces.

Influence of movement model parameterization

In general, all of our brown bear movement models

showed similar relationships to environmental
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heterogeneity as measured by our variables in the

study area. However, the parametrization of models in

terms of the type of analyzed movements steps, and

the method selected to measure environmental covari-

ates influenced the magnitude of those responses, and

thus in effect also the estimates of resistance across the

study area. Our results showed that movement models

with all steps overestimated resistance compared to

models with active steps, and that their performance in

predicting effective distances of corridors was not

consistent across the study area. Therefore, we suggest

to, if at all possible, distinguish between different

types of movement events (associated with different

types of species’ behavior) when analyzing pathway

telemetry data, and focus on those events that repre-

sent actual movement when parametrizing resistance

to movement surfaces. Such distinction could be based

not only on analysis of lengths and directions of

movement steps as in our study, but also on direct

measurements of activity levels by using GPS collars

equipped with activity sensors recording the acceler-

ation of the collar in two or three orthogonal directions

(Gervasi et al. 2006; Löttker et al. 2009; Gottardi et al.

2010).

Resistance surfaces based on movement models

where predictors were averaged along the steps pre-

dicted substantially higher resistance values than resis-

tance surfaces based on movement models where

predictors were measured at endpoints of steps. Covari-

ates measured at endpoints of steps characterized

conditions at actual animal’s relocations though, com-

pared to the covariates measured along the steps which

were based on the assumption that the animal moved in a

straight line between two relocations. If the fix rate,

which determines the temporal scale in step selection

functions, is not optimally chosen for the studied

species, averaging covariates along steps can thus lead

to misleading results (Thurfjell et al. 2014). On the other

hand, when only characteristics at endpoints of steps are

considered, models become more prone to GPS-location

errors and incidental extreme covariate values. Apply-

ing buffers to endpoints of steps and measuring

covariates within those buffers can reduce this problem

somewhat (Dickson et al. 2005).

Implications for brown bear conservation

In addition to our scientific findings, which are related

to the resistance estimates and corridor assessment

across species and landscapes, our results have

important implications for the conservation of brown

bear in the trans-boundary area of the northeastern

Carpathians. Four main conservation messages

emerge from this study. First, our study highlighted

the importance of broad-scale patterns in determining

habitat use of brown bears, as our best single-scale

habitat model used predictors measured at the 8-km

scale and the multiscale habitat model also included

many predictors measured at such broad scales.

Interestingly, the best-performing single-scale model

tested by Mateo Sánchez et al. (2013) for brown bear

in the Cantabrian Mountains also use predictors

measured at a scale of 8 km, suggesting that this scale

may be generally relevant for the species.

Second, our models confirmed the importance of

forested areas with low human disturbance to maintain

habitat suitability and connectivity (Kobler and

Adamic 2000; Preatoni et al. 2005; Martin et al.

2010; Fernández et al. 2012; Martin et al. 2012; Mateo

Sánchez et al. 2013, 2014). We also found high

importance of topographic complexity. Preference for

high topographic complexity in both habitat and

movement models may be associated with better

availability of heterogeneous nutritional resources,

better sheltering opportunities, and less human access

(Nellemann et al. 2007). Although topographic vari-

ables were not important in a previous, broad-scale

habitat model of brown bear across Poland (Fernández

et al. 2012), studies in other parts of Europe (Nelle-

mann et al. 2007; Martin et al. 2010, 2012) and North

America (Nielsen et al. 2006; Apps et al. 2013) also

showed bear’s preference for rugged terrain.

Third, our results highlighted the need for regional

planning of infrastructure and housing development

and a strategic impact assessment. Currently, local

spatial management plans are not obligatory in Poland,

and the Carpathian Mountains have witnessed wide-

spread unplanned housing growth, development of

winter sport infrastructure, and new roads, often in

remote areas (Selva et al. 2011; Fernández et al. 2012).

Fourth, our movement models suggest that the linkage

zone between the western and eastern Carpathian

brown bear subpopulations is limited to a narrow

corridor in Poland. Therefore, actions to protect, and

potentially restore, the connectivity of bear habitat in

the Carpathians are crucial for the conservation of

brown bear (Selva et al. 2011) and likely of other large

mammals.
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Our results have important conservation implica-

tions beyond the Carpathians as well. Many conser-

vation efforts for large mammals are aimed at

protecting and enhancing connectivity to offset the

impacts of habitat loss and fragmentation (Rudnick

et al. 2012). Resistance surfaces underlie most

connectivity assessments, and therefore it is important

to better understand how their parameterization affects

connectivity assessments (Rayfield et al. 2010; Elliot

et al. 2014; Ziółkowska et al. 2014; Mateo Sánchez

et al. 2015a). Our findings highlighted the importance

of including movement data when parameterizing

resistance surfaces, and to proceed with great caution

when choosing the scale of environmental covariates,

as well as their sampling methods.
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Ziółkowska E, Ostapowicz K, Radeloff VC, Kuemmerle T

(2014) Effects of different matrix representations and

connectivity measures on habitat network assessments.

Landscape Ecol 29:1551–1570

1882 Landscape Ecol (2016) 31:1863–1882

123


	Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians
	Abstract
	Context
	Objectives
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Study area
	Brown bear telemetry data
	Landscape variables
	Estimating movement models
	Predicting bear habitat suitability
	Resistance surfaces and connectivity assessment

	Results
	Movement models
	Habitat models
	Comparison of resistance estimates
	Comparison of least-cost corridors

	Discussion
	Comparing connectivity estimates based on habitat versus movement models
	Influence of single versus multiscale habitat models
	Influence of movement model parameterization
	Implications for brown bear conservation

	Acknowledgments
	References




