5

ZRÓŻNICOWANIE ZESPOŁÓW MAKROZOOBENTOSU JAKO ODZWIERCIEDLENIE RÓŻNORODNOŚCI SIEDLISKOWEJ W RZECE GÓRSKIEJ PODDANEJ ZRÓŻZICOWANEJ PRZESTRZENNIE ANTROPOPRESJI

Bartłomiej Wyżga, Paweł Oglęcki, Artur Radecki-Pawlik, Joanna Zawiejska

Abstract

Abstrakt: Większość odcinków Czarnego Dunajca została znacznie przekształcona w wyniku regulacji koryta lub wcięcia się rzeki spowodowanego wydobyciem żwiru. W rezultacie, rzeka ta cechuje się znacznym zróżnicowaniem morfologii - występują w niej zarówno odcinki jednonurtowe z uregulowanym lub wciętym korytem, jak i nieprzekształcone odcinki wielonurtowe. W 18 przekrojach, jedno- do pięcionurtowych, zbadano zróżnicowanie bezkręgowców dennych i odniesiono je do łącznej szerokości koryt małej wody oraz zróżnicowania głębokości wody, prędkości przepływu i wielkości ziarna materiału dennego. Większa liczba koryt małej wody w przekroju była związana z ich większą łączną szerokością i większym zróżnicowaniem fizycznych warunków siedliskowych. Przekroje jednonurtowe były zasiedlone przez 4-7, w większości eurytopowych taksonów makrozoobentosu reprezentujących 2 lub 3 grupy ekologiczne o różnym sposobie odżywiania. Zgrupowania stwierdzane w przekrojach wielonurtowych obejmowały 7-19 taksonów reprezentujących wszystkie pięć grup ekologicznych i charakterystycznych zarówno dla siedlisk lotycznych, jak i lenitycznych. Liczba taksonów makrozoobentosu wzrastała liniowo wraz ze wzrostem liczby koryt małej wody i zróżnicowania głębokości wody, prędkości przepływu i wielkości ziarna materiału dennego w przekroju rzeki. Większa różnorodność bezkręgowców dennych w przekrojach wielonurtowych była więc raczej wynikiem większego zróżnicowania siedlisk niż szerszego ich zasięgu. Niniejsze studium wskazuje, że uproszczenie systemu przepływu i wynikająca z niego homogenizacja fizycznych warunków siedliskowych - spowodowane ingerencją człowieka - skutkują znaczącym zubożeniem zespołów makrozoobentosu. Odtworzenie różnorodności tych zespołów w przyszłości będzie zatem wymagało przywrócenia morfologicznego zróżnicowania rzeki.

Słowa kluczowe: rzeka górska, antropopresja, złożoność systemu przepływu, zróżnicowanie siedliskowe, makrozoobentos, różnorodność bezkręgowców dennych

1. Wstęp

W warunkach naturalnych rzeki górskie są dynamicznymi ekosystemami, wykazującymi trójwymiarową łączność [Kondolf i in., 2006] i charakteryzującymi się dużym zróżnicowaniem wodnych i lądowych siedlisk dla zwierząt i roślin [Tockner i in., 2003]. W XX wieku rzeki górskie przepływające przez gęsto zasiedlone obszary były poddane różnym przejawom antropopresji. Obserwowane powszechnie zmiany wynikały z regulacji koryt, wydobycia kruszywa z rzek i przegradzania ich zaporami i stopniami, którym często towarzyszyły zmiany użytkowania gruntów w zlewni [Bravard, Petts, 1996; Wohl, 2006 i cytowane tam prace]. Działania te prowadziły do niekorzystnych zmian fizycznej struktury systemów rzecznych, takich jak zmniejszenie morfologicznego zróżnicowania koryt, modyfikacja transportu rumowiska, izolacja rzek od terenów zalewowych, niestabilność i pogłębianie się koryt, koncentracja przepływów wezbraniowych w zawężonych korytach oraz zmiany materiału dennego, w tym formowanie się obrukowania dna i odsłanianie skalnego podłoża [np. Bravard i in., 1997; Kondolf, 1997; Liébault, Piégay, 2001; Surian, Rinaldi, 2003; Rinaldi i in., 2005]. Ponieważ zmiany te często powodowały pogorszenie jakości siedlisk w rzekach i obszarach nadrzecznych [Muhar, Jungwirth, 1998], ich następstwem zazwyczaj było zmniejszenie różnorodności biologicznej rzecznych i nadrzecznych ekosystemów [np. Roux i in., 1989; Muhar i in., 2008].

Podobne oddziaływania, połączone z tendencją do pogłębiania się koryt, cechowały także rzeki polskich Karpat [Wyżga, 2008], które w ostatnim stuleciu zostały znacząco zmienione w wyniku bezpośredniej i pośredniej działalności człowieka. Najistotniejsze oddziaływania były związane z pracami regulacyjnymi, które doprowadziły do oddzielenia koryt od zboczy dolin, stabilizacji brzegów, znacznego zwężenia koryt i niemal całkowitego zastąpienia istniejących wcześniej koryt wielonurtowych przez koryta jednonurtowe [Wyżga, 1993, 2001; Korpak, 2007], a także z prowadzonym na dużą skalę wydobyciem żwiru z rzek [Radecki-Pawlik, 2002; Rinaldi i in., 2005], budową zapór przeciwrumowiskowych i przegradzaniem rzek zbiornikami zaporowymi. Wzrost zdolności transportowej rzek karpackich, wywołany regulacją ich koryt, i ograniczenie ilości rumowiska dostępnego do transportu fluwialnego spowodowały gwałtowne obniżanie się dna koryt, które w ciągu XX wieku doprowadziło do wcięcia się rzek o 0,5-3,8 m [Wyżga, 2008]. W drugiej połowie stulecia dalsze ograniczenie dostawy rumowiska ze zlewni, będące wynikiem zmian użytkowania gruntów, zwłaszcza wzrostu lesistości zlewni i związanej z nim stabilizacji stoków [Lach, Wyżga, 2002], spowodowało wzrost intensywności wcinania się rzek w wielu ich odcinkach. Choć budowa betonowych progów miejscowo powstrzymała obniżanie się dna koryt, to jeszcze bardziej zmieniała warunki transportu rumowiska i ograniczyła możliwości migracyjne ryb [Bojarski i in., 2005, Wiśniewolski, 2005]. Efektem wzrostu przepustowości koryt było coraz większe oddzielenie rzek od ich obszarów zalewowych, co ograniczyło dopływ materii organicznej i rumoszu drzewnego ze strefy nadbrzeżnej oraz dostępność zanikających koryt i zbiorników wodnych na terasie zalewowej dla organizmów rzecznych.

Rosnące w ostatnich latach zrozumienie negatywnych skutków oddziaływań człowieka na koryta rzeczne spowodowało wprowadzenie na całym świecie wielu programów rewitalizacji rzek, mających na celu poprawę geomorfologicznego i ekologicznego stanu zmienionych rzek [Lüderitz i in., 2004; Hilman, Brierley, 2005; Habersack, Piégay, 2008].

W krajach Unii Europejskiej wysiłki zmierzające do rewitalizacji cieków wzmożono po przyjęciu Ramowej Dyrektywy Wodnej [Komisja Europejska, 2000], nakazującej osiągnięcie dobrego stanu ekologicznego rzek do 2015 roku. Występowanie i struktura zespołów organizmów wodnych są powszechnie wykorzystywane w monitoringu ekologicznego stanu rzek [np. Jungwirth i in., 2000; Hering i in., 2006], jednak jak dotąd taki monitoring dotyczy przede wszystkim zmian w biocenozach będących wynikiem pogorszenia jakości wody. Jeśli zabiegi rewitalizacyjne mają być skuteczne, muszą być oparte na zrozumieniu znaczenia różnorodności i struktury siedlisk dla stanu ekosystemów rzecznych. Dlatego też określenie zależności struktury biocenoz rzecznych od hydromorfologicznych parametrów siedlisk staje się ostatnio zasadniczym celem zintegrowanych - ekologicznych, geomorfologicznych i hydrologicznych - badań rzek [Vaughan i in., 2009]. W niniejszym studium zaprezentowano takie właśnie ekohydromorfologiczne podejście w celu określenia zależności pomiędzy fizycznymi parametrami siedliskowymi a różnorodnością i składem zespołów makrozoobentosu w szeregu przekrojów Czarnego Dunajca, stanowiącego przykład rzeki karpackiej, która w ostatnich kilkudziesięciu latach została poddana silnej, choć zróżnicowanej przestrzennie antropopresji.

2. Obszar badań

Czarny Dunajec stanowi górną część Dunajca (ryc. 5.1), drugiej co do wielkości rzeki polskich Karpat. Jego źródła znajdują się w Tatrach, co determinuje hydrologiczny reżim rzeki z niskimi przepływami zimowymi i wezbraniami występującymi w okresie maj-sierpień. Zasilany grubym materiałem w Tatrach, na ich przedpolu Czarny Dunajec utworzył niekohezyjną równinę aluwialną, płynąc roztokowym korytem przez 38 kilometrów do połączenia z Białym Dunajcem (ryc. 5.1B).

Stosunkowo złożony system wielonurtowego koryta Czarnego Dunajca uległ zmianom w drugiej połowie XX wieku wskutek silnej, lecz zróżnicowanej przestrzennie antropopresji [Krzemień, 2003; Zawiejska, Krzemień, 2004; Zawiejska, Wyżga, 2010]. W latach 50. i 60. w wielu odcinkach rzeki prowadzono intensywną eksploatację żwiru z koryta [Dudziak, 1965], a w późniejszych dekadach usunięto z niego liczne większe otoczaki i głazy [Krzemień, 2003]. Efektem tych działań było dochodzące do 3,5 metra obniżenie się dna rzeki, a także - na znacznej części biegu Czarnego Dunajca w obrębie Pogórza Gubałowskiego - przekształcenie koryta aluwialnego w koryto skalne [Zawiejska, Wyżga, 2010]. W 7-kilometrowym odcinku środkowego biegu rzeki od lat 60. do 90. przeprowadzono regulację koryta, która doprowadziła do: (i) zastapienia dotychczasowego koryta wielonurtowego przez niemal proste koryto jednonurtowe, (ii) znacznego, nawet pięciokrotnego zwężenia koryta oraz (iii) zmniejszenia spadku rzeki wskutek budowy wielu betonowych progów o wysokości $0,7-2,1 \mathrm{~m}$. Poniżej uregulowanego odcinka, na długości 4 km rzeka płynie nieuregulowanym korytem wielonurtowym o zróżnicowanym udziale kęp. Jeszcze niżej, w wyniku prac regulacyjnych zakończonych w latach 80., doszło do wyprostowania i znacznego zwężenia rzeki w jej dolnym biegu, jednak spadek rzeki nie został tu zmniejszony przez budowę betonowych progów.

W pracy przedstawiono wyniki badań przeprowadzonych w 17-kilometrowym odcinku rzeki w jej środkowym biegu, w którym Czarny Dunajec płynie po dużym, fluwioglacjalno-aluwialnym stożku uformowanym w czwartorzędzie w śródgórskiej

Ryc. 5.1. (A) Lokalizacja Czarnego Dunajca na tle regionów fizycznogeograficznych południowej Polski. (B) Zlewnia Czarnego Dunajca na tle hipsometrii i jednostek fizycznogeograficznych oraz lokalizacja badanych przekrojów rzeki. 1 - góry wysokie; 2 - góry średnie i niskie; 3 - pogórza; 4 - kotliny przedgórskie i śródgórskie; 5 - zlewnia Czarnego Dunajca do początku odcinka badawczego; 6 - przyrost zlewni Czarnego Dunajca w odcinku badawczym; 7 - granica zlewni Czarnego Dunajca; 8 - granice jednostek fizycznogeograficznych; 9 - badane przekroje rzeki; 10 - posterunki wodowskazowe; PPS - Pieniński Pas Skałkowy; RPT - Rów Podtatrzański. Według: Wyżga i in. [2011].
Fig. 5.1. (A) Location of the Czarny Dunajec River in relation to physiogeographic regions of southern Poland. (B) Drainage network and physiography of the Czarny Dunajec catchment and detailed setting of the investigated river cross-sections. 1 - high mountains; 2 - mountains of intermediate and low height; 3-foothills; 4 - intramontane and submontane depressions; 5 - the Czarny Dunajec catchment to the beginning of the study reach; 6 - catchment area increment along the study reach; 7 - boundary of the Czarny Dunajec catchment; 8 - boundaries of physiogeographic units; 9 - river cross-sections investigated; 10 - water-gauge stations; PPS - Pieniny Klippen Belt; RPT - Sub-Tatran Trough. After: Wyżga et al. [2011].

Kotlinie Orawsko-Nowotarskiej [Baumgart-Kotarba, 1992]. Na skutek takiego położenia, w badanym odcinku brak większych dopływów i powierzchnia zlewni wzrasta w niewielkim stopniu (ryc. 5.1). W górnej części odcinka koryto jest głęboko wcięte, w środkowej uregulowane, z licznymi betonowymi progami i rampami, zaś w dolnej - nieuregulowane, z krótkim fragmentem uregulowanego koryta w części końcowej. Badany odcinek rzeki jest więc znacznie zróżnicowany pod względem morfologicznym [Wyżga, Zawiejska, 2005], z fragmentami jedno- i wielonurtowymi, zarówno wciętymi, jak i stabilnymi w pionie. Takie zróżnicowane, kontrastowe warunki morfologiczne, w połączeniu z różnicami w charakterze utrzymania koryta, zaowocowały tu znacznym zróżnicowaniem przestrzennym fizycznego stanu siedlisk rzecznych, które powinny znaleźć odbicie w zróżnicowaniu bogactwa rzecznej biocenozy.

3. Metody badań

Do badań wybrano 18 przekrojów reprezentujących różne warunki hydromorfologiczne występujące w odcinku badawczym. Wstępne obserwacje wskazały, że w wyniku regulacji koryta i wcięcia się rzeki zróżnicowanie siedliskowe zmalało w większym stopniu w plosach niż na bystrzach. Przekroje badawcze zostały zatem wytyczone przez plosa, gdyż celem badań było określenie różnic fizycznych parametrów siedlisk i zespołów makrozoobentosu pomiędzy segmentami rzeki o różnej morfologii i charakterze utrzymania koryta, a nie w układzie bystrze-ploso. W czasie niżówki w końcu marca i w pierwszej połowie kwietnia 2008 r. wykonano niwelację przekrojów i w odstępie 1 m w korytach małej wody przeprowadzono pomiary głębokości wody, prędkości przepływu i wielkości ziarna materiału wyścielającego dno rzeki. Prędkość przepływu mierzono na 0,6 całkowitej głębokości (średnia prędkość w pionie hydrometrycznym) i 1 cm nad dnem (prędkośc przydenna) za pomocą elektromagnetycznego przyrządu do pomiaru prędkości Ott Nautilus C 2000. Jego konstrukcja, a przede wszystkim brak wirnika, umożliwia pomiary w bezpośrednim sąsiedztwie dna. Średnią wielkość powierzchniowego materiału żwirowego ustalono na podstawie pomiarów wielkości otoczaków zbieranych wzdłuż wyznaczonych linii (ang. transect sampling). Taki sposób opróbowania daje identyczne wyniki, jak próba powierzchniowa zbierana na przecięciach prostopadłych linii (ang. grid by number sampling) [Diplas, Sutherland, 1988], a wyniki obu metod mogą być porównywane z wynikami przesiewu prób objętościowych żwirów [Diplas, Sutherland, 1988; Shirazi i in., 2009]. Na każdym stanowisku pomiarowym w obrębie koryt małej wody mierzono 15 otoczaków; przy takiej wielkości próby mierzone ziarna mieściły się w obszarze dna scharakteryzowanym pomiarami hydraulicznymi w danym pionie hydrometrycznym. Dla każdej próby ustalono ciạg średnic „b" mierzonych otoczaków i średnią średnicę ziarna w próbie obliczono jako średnią arytmetyczną ze średnic 3-go, 8 -go i 13-go ziarna w ciągu. Tak ustalona średnia średnica ziarna odpowiada średniej arytmetycznej z 20 -tego, 50 -tego i 80 -tego percentyla rozkładu uziarnienia i jest najbliższym możliwym przybliżeniem wzoru Folka i Warda [1957]. Próby osadów piaszczystych i mułowych przetransportowano do laboratorium, gdzie rozkład ich wielkości ziarna określono, odpowiednio, metodą sitową i metodą areometryczną. Średnią średnicę ziarna tych osadów ustalono na podstawie tych samych percentyli rozkładu uziarnienia, jak w przypadku osadów żwirowych. Następnie na podstawie danych ze stanowisk pomiaro-
wych, rozmieszczonych co 1 m , dla każdego przekroju wyliczono średnie i współczynniki zmienności analizowanych parametrów.

Pobór prób makrozoobentosu przeprowadzono w dniach 21-22 marca 2008 r., w podobnych warunkach przepływów niżówkowych. Zdecydowano się na jednorazowy pobór prób w ciągu roku, aby określić skład zespołów bezkręgowców reprezentatywnych dla warunków stwierdzonych w trakcie pomiarów fizycznych parametrów siedlisk w rzece cechującej się bardzo dużą dynamiką procesów fluwialnych.

Ponieważ liczebność poszczególnych grup makrozoobentosu zmienia się w ciągu roku [Hynes, 1970; McCafferty, 1998], celem badań było ustalenie zróżnicowania taksonomicznego i funkcjonalnego oraz bogactwa taksonomicznego bezkręgowców dennych w poszczególnych przekrojach lub w poszczególnych korytach małej wody w danym przekroju, pominięto natomiast aspekt liczebności osobników. Ponieważ liczba koryt małej wody w poszczególnych przekrojach zmienia się w czasie, tę samą liczbę prób pobierano z każdego koryta małej wody, a nie z całego przekroju. Zapewnia to powtarzalność sposobu poboru prób w kolejnych latach, mimo zmieniającej się niekiedy liczby koryt małej wody w przekrojach. W każdym z koryt małej wody próby pobrano w trzech typowych, reprezentatywnych stanowiskach, z uwzględnieniem takich parametrów, jak głębokość wody, prędkość przepływu i typ materiału dennego. Na każdym stanowisku próby pobierano z powierzchni około $0,25 \mathrm{~m}^{2}$ przy użyciu siatki o wielkości oczek $500 \mu \mathrm{~m}$, chwytacza Birge'a-Ekmana, kasarka i pęsety (do zbierania okazów z kamieni). Zwracano szczególną uwagę na zachowanie zbliżonej powierzchni i czasu poboru prób na każdym stanowisku [por. Fiałkowski i in., 2005], natomiast liczba osobników zebranych w poszczególnych próbach różniła się znacząco w zależności od typu materiału dennego, a zwłaszcza obecności/braku chruścików wykazujących wyjątkowo skupiskowy typ rozmieszczenia (Philopotamus sp.). Bezkręgowce oznaczano w laboratorium, częściowo z materiału nieutrwalonego w ciągu 2-3 dni od poboru prób, a częściowo z utrwalonego za pomocą 70\% etanolu. Przyjęto zasadę maksymalnej pewności oznaczenia, identyfikując poszczególne okazy do najniższej pewnej rangi taksonomicznej.

W analizie siedlisk rzecznych zasadnicze rysy morfologii rzeki w badanych przekrojach rozpatrywano w kontekście różnych oddziaływań antropogenicznych na poszczególne odcinki Czarnego Dunajca w ciągu ostatnich dziesięcioleci. Za pomocą liniowych modeli regresji zbadano statystyczną istotność możliwych zależności pomiędzy liczbą koryt małej wody w przekroju a mierzonymi parametrami fizycznymi siedlisk rzecznych. Zróżnicowanie warunków siedliskowych w przekrojach jedno- i wielonurtowych porównano następnie, analizując wykresy rozrzutu dla par mierzonych parametrów siedlisk. Różnice warunków fizycznych pomiędzy poszczególnymi korytami małej wody w przekrojach wielonurtowych przedstawiono na przykładzie pięcionurtowego przekroju L, a ich istotność statystyczną określono za pomocą testu ANOVA Kruskala-Wallisa.

W analizie zgrupowań makrozoobentosu zidentyfikowano taksony wskaźnikowe dla dobrej i wysokiej jakości wody [Hawkes, 1998; Dumnicka i in., 2006] i zbadano ich rozmieszczenie w badanym odcinku rzeki, dążąc do określenia, czy różnice bogactwa taksonomicznego bezkręgowców dennych stwierdzone pomiędzy poszczególnymi przekrojami mogą być wynikiem pogorszenia jakości wody. Istotność różnicy liczby taksonów makrozoobentosu pomiędzy przekrojami jedno-i wielonurtowymi, a także pomiędzy przekrojami jednonurtowymi i poszczególnymi korytami małej wody przekrojów
wielonurtowych analizowano za pomocą testu Manna-Whitneya. Różnice w bogactwie taksonomicznym i składzie zgrupowań makrozoobentosu pomiędzy poszczególnymi przekrojami, a także pomiędzy poszczególnymi korytami małej wody w przekrojach wielonurtowych mierzono za pomocą współczynnika podobieństwa Jaccarda, mogącego przybierać wartości od 0 (brak wspólnych taksonów) do 100% (taki sam skład taksonomiczny). Poszczególne taksony zaliczono do odpowiednich grup ekologicznych o różnym sposobie odżywiania [Cummins, Klug, 1979; Lampert, Sommer, 2007], wyróżniono również taksony eurytopowe oraz preferujące siedliska lotyczne lub lenityczne [Kołodziejczyk, Koperski 2000; Kownacki, 2003]. Rozmieszczenie tych taksonów w odcinku badawczym określono dla zobrazowania różnic w składzie zespołów makrozoobentosu pomiędzy przekrojami jedno- i wielonurtowymi. Wreszcie, za pomocą modeli prostej i wielokrotnej regresji zbadano statystyczną istotność zależności pomiędzy fizycznymi parametrami siedlisk rzecznych a liczbą taksonów bezkręgowców w badanych przekrojach.

4. Wyniki

4.1. Zasadnicze rysy morfologii rzeki w badanym odcinku

Jednonurtowe koryto uregulowane lub wcięte występuje na około 60% całkowitej długości odcinka badawczego. Jednak spośród 18 analizowanych przekrojów (ryc. 5.1B) tylko 6 wytyczono w obrębie koryta jednonurtowego, chcąc w ten sposób uniknąć nadmiernego reprezentowania tego typu morfologii koryta w badanej próbie. Pozostałe 12 przekrojów to przekroje wielonurtowe z 2-5 korytami małej wody.

Przekroje A-E były zlokalizowane we wciętej, górnej części odcinka badawczego. Dwa z nich były jednonurtowe (A i C), zaś trzy wielonurtowe z korytami małej wody rozdzielonymi łachami żwirowymi (E dwunurtowy, B i D trzynurtowe). Przekroje F-H wytyczono w uregulowanym odcinku rzeki z betonowymi progami i rampami; cechowały się one obecnością jednonurtowego, wąskiego koryta o sztucznie umocnionych brzegach (ryc. 5.2, 5.3 - przekrój F). Jednonurtowa morfologia koryta cechowała także przekrój S zlokalizowany w uregulowanej, końcowej części odcinka badawczego. Przekroje J-M, zlokalizowane w środkowej części nieuregulowanego odcinka Czarnego Dunajca, miały 4 lub 5 koryt małej wody i cechowały się wysokim lub średnim udziałem kęp w obrębie rzeki (ryc. 5.2, 5.3 - przekrój M). Przekrój I oraz przekroje od N do R, położone w strefach przejściowych pomiędzy całkowicie nieuregulowanym korytem w części środkowej oraz uregulowanym korytem powyżej i poniżej, miały jeden brzeg umocniony narzutem kamiennym i były dwudzielne lub trójdzielne, z poszczególnymi korytami małej wody rozdzielonymi łachami żwirowymi.

4.2. Fizyczne parametry siedlisk rzecznych

Pomiary parametrów hydraulicznych wykonano przy przepływie wynoszącym w poszczególnych przekrojach od 3,42 do $3,86 \mathrm{~m}^{3} / \mathrm{s}$. Nie stwierdzono systematycznej zmiany przepływu w miarę wzrostu odległości od początku odcinka badawczego (regresja liniowa, $p=0,30$) lub zwiększania się powierzchni zlewni do danego przekroju ($p=0,33$). Wskutek specyficznego położenia hydrograficznego odcinka badawczego (ryc. 5.1B)

Przekrój F

Ryc. 5.2. Przykładowe przekroje poprzeczne Czarnego Dunajca w odcinku uregulowanym (przekrój F) i nieuregulowanym (przekrój M). Dla koryt małej wody wskazano także średnią średnicę ziarna osadu na powierzchni dna oraz przydenną prędkość przepływu, pomierzone w 1-metrowych odstępach. Skala dla prędkości rozpoczyna się na powierzchni wody w każdym z koryt małej wody. Według: Wyżga i in. [2011].

Fig. 5.2. Examples of cross-sectional morphology of the Czarny Dunajec in channelized river section (upper) and an unmanaged section (lower). For low-flow channels, mean grain size of surface bed material and near-bed flow velocity are indicated at 1 m intervals. The scale for velocity commences at the water surface for each low-flow channel. After: Wyżga et al. [2011].

Ryc. 5.3. Widok Czarnego Dunajca w jednonurtowym przekroju F i w czteronurtowym przekroju M. Poziomymi strzałkami wskazano lokalizację badanych przekrojów, a pionowymi strzałkami lokalizację poszczególnych koryt małej wody w przekroju M. Przekrój F pokazany od góry rzeki, a przekrój M od dołu. Według: Wyżga i in. [2011].

Fig. 5.3. View of the Czarny Dunajec River in single-thread cross-section F (upper photo) and cross-section M with four braids (lower photo). Horizontal arrows indicate a location of the investigated cross-sections, and vertical arrows point to particular low-flow channels in cross-section M. Cross-section F is viewed downstream, and cross-section M in the upstream direction. After: Wyżga et al. [2011].
nie stwierdzono zwiększania się przepływu z biegiem rzeki, rejestrowana zmienność przepływu odzwierciedlała natomiast zmiany odpływu ze zlewni w czasie wielodniowych badań. Pozwala to na uznanie danych ze wszystkich przekrojów za reprezentujące podobne warunki hydrologiczne i zbadanie, czy fizyczne parametry siedlisk rzecznych były uzależnione od złożoności systemu przepływu w rzece.

Nie stwierdzono istotnych zależności pomiędzy liczbą koryt małej wody a średnimi wartościami głębokości wody, prędkości średniej i prędkości przydennej w przekroju rzeki (tab. 5.1). Zwiększaniu się złożoności systemu przepływu towarzyszył natomiast wzrost łącznej szerokości koryt (ryc. 5.2, tab. 5.1); wzrastała ona przeciętnie o 4 metry wraz

Tabela 5.1. Wyniki analizy regresji liniowej dla zależności pomiędzy liczbą koryt małej wody a fizycznymi parametrami siedliskowymi w badanych przekrojach Czarnego Dunajca. Pogrubioną czcionką wskazano zależności statystycznie istotne na poziomie $\mathrm{p}<0,05$.

Zmienna zależna	Wartość beta	Współczynnik determinacji	Poziom istotności
Łączna szerokość koryt małej wody	$\mathbf{B}=\mathbf{0 , 5 4}$	$\mathbf{R}^{2}=\mathbf{0 , 2 9}$	$\mathbf{p}=\mathbf{0 , 0 2}$
Głębokość wody - średnia	$\mathrm{B}=-0,41$	$\mathrm{R}^{2}=0,17$	$\mathrm{p}=0,09$
Głębokość wody - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 7 4}$	$\mathbf{R}^{2}=\mathbf{0 , 5 5}$	$\mathbf{p}=\mathbf{0 , 0 0 0 5}$
Średnia prędkość przepływu w pionie hydrometrycznym - średnia	$\mathrm{B}=-0,16$	$\mathrm{R}^{2}=0,03$	$\mathrm{p}=0,53$
Średnia prędkość przepływu w pionie hydrometrycznym - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 4 9}$	$\mathbf{R}^{2}=\mathbf{0 , 2 4}$	$\mathbf{p}=\mathbf{0 , 0 4}$
Prędkość przydenna - średnia	$\mathrm{B}=0,02$	$\mathrm{R}^{2}=0,00$	$\mathrm{p}=0,94$
Prędkość przydenna - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 4 9}$	$\mathbf{R}^{2}=\mathbf{0 , 2 4}$	$\mathbf{p}=\mathbf{0 , 0 4}$
Średnia średnica ziarna - średnia	$\mathbf{B}=\mathbf{- 0 , 7 5}$	$\mathbf{R}^{2}=\mathbf{0 , 5 6}$	$\mathbf{p}=\mathbf{0 , 0 0 0 3}$
Średnia średnica ziarna - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 8 0}$	$\mathbf{R}^{2}=\mathbf{0 , 6 4}$	$\mathrm{p}=0,00008$

z każdym kolejnym korytem małej wody w przekroju rzeki (ryc. 5.4). Ponadto, średnia średnica ziarna materiału dennego malała wraz ze wzrostem liczby koryt w przekroju i zależność tę cechowała bardzo wysoka istotność statystyczna (tab. 5.1).

Wzrostowi złożoności systemu przepływu towarzyszył wzrost zróżnicowania głębokości wody ($\mathrm{p}=0,0004$), prędkości średniej ($\mathrm{p}=0,04$) i prędkości przydennej ($\mathrm{p}=$ 0,04) oraz średniej średnicy ziarna materiału dennego ($p=0,00008$) w przekroju rzeki (ryc. 5.4, tab. 5.1). W konsekwencji przekroje jednonurtowe i przekroje wielonurtowe z kilkoma korytami małej wody różniły się znacząco stopniem zróżnicowania fizycznych parametrów siedliskowych (ryc. 5.2). Te pierwsze cechował stosunkowo regularny rozkład głębokości i prędkości przepływu oraz obecność żwirowego dna na całej szerokości koryta (ryc. 5.2 - przekrój F). W tych drugich obok roztok o silnym prądzie występowały roztoki z wolno płynącą wodą, a oprócz dominujących żwirowych partii dna występowały także obszary pokryte piaskiem lub mułem (ryc. 5.2 - przekrój M). Średnie wartości prędkości średniej i prędkości przydennej były silnie skorelowane w badanych przekrojach (r = 0,$81 ; \mathrm{p}=0,00004$), jeszcze silniejszą korelację wykazywały natomiast współczynniki zmienności obu parametrów ($\mathrm{r}=0,96 ; \mathrm{p}=0,000001$), co wskazuje na bardzo podobne zróżnicowanie tych parametrów w obrębie przekrojów.

Różnice w stopniu zróżnicowania fizycznych parametrów siedlisk Czarnego Dunajca, występujące pomiędzy przekrojami jedno- i wielonurtowymi, są dobrze widoczne na wykresach rozrzutu dla par parametrów mierzonych w 1-metrowych odstępach. W przekrojach jednonurtowych prędkość przepływu (zarówno przydenna, jak i średnia) wzrasta wraz ze wzrostem głębokości (ryc. 5.5). Jest to odzwierciedleniem stopniowego przechodzenia od wolno płynącej wody w płytszych partiach koryta do szybszego prądu w głębszych częściach przekroju (ryc. 5.2 - przekrój F). W przekrojach wielonurtowych nie stwierdzono zależności prędkości przepływu od głębokości wody (ryc. 5.5). W miejscach o stosunkowo płytkiej wodzie stwierdzano tu bardzo zróżnicowane wartości prędkości przydennej, w zależności od tego, czy pomiarów dokonywano w głównej roztoce przenoszącej większość przepływu, czy też w bocznych odnogach, częściowo oddzielonych

Ryc. 5.4. Wykresy rozrzutu oraz linie regresji ustalone dla zależności pomiędzy liczbą koryt małej wody w przekroju rzeki a łączną szerokością tych koryt oraz współczynnikiem zmienności głębokości, prędkości przydennej i średniej średnicy ziarna osadu na powierzchni dna w badanych przekrojach Czarnego Dunajca. Według: Wyżga i in. [2011].

Fig. 5.4. Scatter plots and estimated regression relationships between the aggregated width of low-flow channels and the coefficients of variation of flow depth, near-bed flow velocity and mean grain size of surface bed material, and the number of flow threads in the investigated cross-sections of the Czarny Dunajec River. After: Wyżga et al. [2011].
od głównego koryta (ryc. 5.2 - przekrój M). Jednocześnie niskie prędkości notowano w jednych roztokach na płytkiej wodzie, gdzie były one wynikiem dużej szorstkości dna, natomiast w innych w głębokich zastoiskach z zatamowanym przepływem wody.

W przekrojach jednonurtowych wielkość ziarna żwirowego materiału wyścielającego dno rzeki nie była powiązana z prędkościami przepływu mierzonymi w czasie niżówki (ryc. 5.5), gdyż dno to formuje się przy znacznie wyższych prędkościach przepływu występujących w czasie wezbrań. Jednocześnie w płytkich partiach koryta o niewielkiej prędkości przepływu nie stwierdzono tu obecności drobnoziarnistych osadów dennych (ryc. 5.5). Wskazuje to, że niewielkie głębokości i wolny przepływ stanowią w tych przekrojach warunki przejściowe, a drobnoziarniste osady, nawet jeśli zostaną zdeponowane na dnie przy niskich i średnich stanach wody, są łatwo i regularnie wypłukiwane z takich miejsc. W przekrojach wielonurtowych stwierdzono dwa typy materiału dennego: (i) żwiry, dominujące w głównych roztokach przenoszących większość przepływu, oraz (ii) osady mułowo-piaszczyste, występujące zazwyczaj w bocznych odnogach o mniejszej prędkości przepływu, ale także w głównych roztokach, w miejscach o wolniejszym przepływie (ryc. 5.5). Wielkość ziarna osadów żwirowych jest odzwierciedleniem warunków sedymentacji w czasie przepływów wezbraniowych, natomiast w przypadku osadów

Ryc. 5.5. Wykresy rozrzutu dla par fizycznych charakterystyk siedlisk zmierzonych we wszystkich opróbowanych punktach badanych przekrojów Czarnego Dunajca pokazane dla sześciu przekrojów jednonurtowych (lewa strona) i czterech przekrojów wielonurtowych o największej liczbie koryt małej wody (prawa strona). Według: Wyżga i in. [2011].

Fig. 5.5. Scatter plots for the pairs of physical habitat characteristics measured at all sampling sites in the investigated cross-sections of the Czarny Dunajec River: six single-thread cross-sections (left diagrams) and four multi-thread ones with the largest number of low-flow channels (right diagrams). After: Wyżga et al. [2011].
drobnoziarnistych jest dostosowana do warunków hydraulicznych występujących podczas niskich i średnich przepływów. Przy stosunkowo długotrwałym oddzieleniu górnej części bocznych odnóg od głównego nurtu, drobny materiał denny pokrywający żwirowe podłoże może się utrzymywać i akumulować, niekiedy osiągając znaczną miąższość.

Ryc. 5.6. Średnia i przedział zmienności głębokości, prędkości przydennej i średniej średnicy ziarna osadu na powierzchni dna w kolejnych korytach małej wody pięcionurtowego przekroju L oraz wyniki testu ANOVA Kruskalla-Wallisa na istotność różnicy średnich wartości tych parametrów pomiędzy badanymi korytami małej wody. Według: Wyżga i in. [2011].

Fig. 5.6. Range and mean of the flow depth, near-bed flow velocity and mean grain size of surface bed material in particular low-flow channels of cross-section L with five flow threads, and the results of a Kruskal-Wallis test for the significance of difference of the parameter means among the low-flow channels. After: Wyżga et al. [2011].

Dużą różnorodność warunków siedliskowych w wielonurtowych odcinkach rzeki zilustrowano na rycinie 5.6, pokazującej zarówno rozpiętość, jak i średnie wartości głębokości wody, prędkości przydennej i wielkości ziarna materiału dennego w pięciu roztokach przekroju L. Średnie wartości tych parametrów różniły się istotnie pomiędzy poszczególnymi korytami małej wody, zaś poszczególne roztoki cechował swoisty przedział wartości poszczególnych parametrów. W rezultacie każde z koryt wykazywało specyficzną kombinację warunków hydraulicznych i materiału dennego, odpowiednią dla różnych taksonów makrozoobentosu.
Tabela 5.2. Taksony makrozoobentosu stwierdzone w poszczególnych korytach małej wody badanych przekrojów Czarnego Dunajca oraz łączna liczba taksonów zanotowanych w tych korytach i badanych przekrojach rzeki. Podkreślono taksony wskaźnikowe dla dobrej i wysokiej jakości wody [por. Hawkes, 1997; Kownacki et al., 2002].

Takson	A	B	${ }_{1} \mathrm{~B}_{2}$	B_{3}	3_{3}	C D	$\mathrm{D}_{1} \mathrm{D}_{2}$	D_{3}	E_{1}	E_{2}	F	C	G H	I	I_{2}	J_{1}	J_{2}	J_{3} J	$\mathrm{J}_{4} \mathrm{~K}$	K ${ }_{1}$	${ }_{2} \mathrm{~K}$	K	L_{1}	L_{2}	L	L_{4}	L_{5}		$\mathrm{M}_{2} \mathrm{M}$				O_{1}	O_{3}	P_{1}	P_{2}	P_{3}	$\mathrm{R}_{1} \mathrm{R}_{2}$		S
Crenobia alpina			X	X	X	X		X			X						X			X					X			X					X				X	X		
Dendrocoleum carpathicum				X	x			X							X											X								X			X			
Nematoda		X					x									X			x				X				X			X	x				X					
Lumbricidae		X					x							X		X			X				X								X		x		X	X				
Perla sp.	X	X	x	x	X \times		x X	x	X		X				X	X	x		X x	x	X				X			X	$x \mathrm{x}$			x	x x	X	X	X	x	x		x
Perlodes sp.	X	X	X	X			X X	x	x	X	x	x	x \times	X	X	X	x	x		X	x x	x			X	x		X	x x			X	x x		X		x	x		x
Leuctra sp.		X		X	x			X			X				X		X	X		X		x			X				$\mathrm{x} \times$		X		X x			X		X		
Caenis sp.		X		X	x		x	X		X	X				X	x				X	x				X				x							X	x	x		
Ephemerella ignita		X	X	X	x	x	x x	x		X	X	X	$\times \times$		X		X	X		X	X	X			X	x	x		X			X		X			x	x		
Heptagenia sp.	X			X	x			X							X		X	x			X	X			X	X	X	x	x				x			X	X	X		
Agapetus sp.		X						X							X		X			X	x						X		X					X			X	x		
Goera sp.		X		x	x						X				X					X	X			X									x				X	X		
Hydropsyche sp.	X		X	x	$\times \times$		x	X	X								X					X		X	x				X			X		X			X	X		
Philopotamus sp.			X				X		X	X					X		X	x		X	x					X		X	X				x				X	X		x
Rhyacophila sp.	X			X			X	x				X	x \times		X		X	x		X	X	X		x		X			x				x	x			X	X		x
Simulium sp.								X				X					X											x										X		
Tabanidae							X							X		X											X			X	X		x					X		
Tipula sp.							X							X		X			X								X			X					X			X		
Chironomidae							X							X		X			X				X						X	X	X	X	X	X	X	X		X		
Acari																		X																						
Ancylus fluviatilis			X	X					X				X		X		X			X	x	X				X			X				X					x		
Liczba taksonów w korycie matej wody	5	9	7				78	12	5	4	7				512	8		7			6	7	3	3	8	7	6	6		4	5	5	87	7	6	6	12	611		4
Liczba taksonów w przekroju rzeki	5		16				18			7	7	4	44		16		19				13				19				17			9	16			17		17		4

4.3. Zespoty makrozoobentosu

W badanym odcinku Czarnego Dunajca stwierdzono występowanie 21 taksonów makrozoobentosu, z czego 4 oznaczono do poziomu gatunku, 12 - rodzaju i 5 - rodziny lub wyższej jednostki (tab. 5.2). Żaden z taksonów nie był obecny we wszystkich badanych przekrojach, jednakże widelnice z rodzaju Perlodes występowały w 17 przekrojach, zaś 2 inne - widelnice z rodzaju Perla i jętkę Ephemerella ignita - znaleziono w 16 przekrojach. Nie zaobserwowano systematycznej zmiany składu zespołów makrozoobentosu wzdłuż odcinka badawczego, a poszczególne taksony notowano zarówno w jego górnej, jak i dolnej części. Wyjątek stanowiły larwy roztoczy (rząd Acari), które zaobserwowano jedynie w jednym z koryt małej wody przekroju J (tab. 5.2). Warte uwagi jest, iż taksony wskaźnikowe dla dobrej lub wysokiej jakości wody stwierdzono we wszystkich badanych przekrojach. W przekrojach jednonurtowych stwierdzono od 2 do 6 takich taksonów, co stanowiło 50-86\% wszystkich zaobserwowanych tu taksonów makrozoobentosu. W przekrojach wielonurtowych występowało od 4 do 10 taksonów typowych dla wód dobrej i wysokiej jakości (tj. 44-77\% wszystkich taksonów - tab. 5.2). Znacząco różną liczbę taksonów wskaźnikowych rejestrowano w sąsiednich przekrojach o różnej liczbie koryt małej wody - na przykład 10 w trzynurtowym przekroju $\mathrm{B}, 2 \mathrm{w}$ jednonurtowym przekroju C i 9 w trzynurtowym przekroju D (tab. 5.2).

Bogactwo taksonomiczne zespołów makrozoobentosu różniło się znacząco w obrębie odcinka badawczego - w poszczególnych przekrojach stwierdzono od 4 do 19 taksonów. Generalnie przekroje wielonurtowe charakteryzowały się większą liczbą taksonów bezkręgowców dennych niż przekroje jednonurtowe. W przekrojach jednonurtowych stwierdzono od 4 do 7 taksonów (średnio 4,7), podczas gdy w wielonurtowych od 7 do 19 (średnio 15,3) i różnica ta była statystycznie istotna (test Manna-Whitneya, $p=0,001$). Ponieważ większa liczba pobranych prób wpływa na zwiększenie liczby stwierdzonych taksonów bezkręgowców dennych [Larsen, Herlihy, 1998], wykonano dwie analizy służące do ustalenia, czy wspomniana różnica w liczbie taksonów notowanych w obu typach przekrojów była efektem większej liczby prób pobranych w przekrojach wielonurtowych, czy też raczej cechującego te przekroje większego zróżnicowania warunków siedliskowych. Po pierwsze, liczbę taksonów stwierdzonych w przekrojach jednonurtowych porównano z wynikami z poszczególnych koryt małej wody przekrojów wielonurtowych. Przy jednakowej liczbie prób pobranych w obu typach koryt, w poszczególnych roztokach stwierdzono od 3 do 12 taksonów (średnio 7,1), podczas gdy w przekrojach jednonurtowych od 4 do 7 taksonów (średnio 4,7) i różnica ta była statystycznie istotna (test Man-na-Whitneya, $\mathrm{p}=0,001$). Wśród 37 roztok badanych przekrojów wielonurtowych, w 33 stwierdzono więcej taksonów niż średnio w przekrojach jednonurtowych (tab. 5.2). Po drugie, we wszystkich badanych przekrojach jednonurtowych stwierdzono 11 taksonów i tę liczbę porównano z liczbą taksonów stwierdzonych w poszczególnych przekrojach wielonurtowych. Chociaż łączna liczba prób pobranych w przekrojach jednonurtowych (18) przekraczała liczbę prób pobranych w poszczególnych przekrojach wielonurtowych (6-15), 10 z 12 przekrojów wielonurtowych charakteryzowało się obecnością większej liczby taksonów makrozoobentosu niż wszystkie przekroje jednonurtowe (tab. 5.2)

Z powodu niewielkiej liczby taksonów występujących w poszczególnych przekrojach jednonurtowych, zgrupowania makrozoobentosu stwierdzone w przekrojach

Tabela 5.3. Wartości współczynnika Jaccarda (w procentach) przedstawiajace podobieństwo taksonomiczne pomiędzy zgrupowaniami makrozoobentosu stwierdzonymi w badanych przekrojach Czarnego Dunajca. W nawiasach wskazano liczbę koryt małej wody w poszczególnych przekrojach.

	$\mathrm{A}(1)$	$\mathrm{B}(3)$	$\mathrm{C}(1)$	$\mathrm{D}(3)$	$\mathrm{E}(2)$	$\mathrm{F}(1)$	$\mathrm{G}(1)$	$\mathrm{H}(1)$	$\mathrm{I}(2)$	$\mathrm{J}(4)$	$\mathrm{K}(4)$	$\mathrm{L}(5)$	$\mathrm{M}(4)$	$\mathrm{N}(2)$	$\mathrm{O}(3)$	$\mathrm{P}(3)$	$\mathrm{R}(2)$	$\mathrm{S}(1)$
$\mathrm{A}(1)$																		
$\mathrm{B}(3)$	31																	
$\mathrm{C}(1)$	29	25																
$\mathrm{D}(3)$	29	74	24															
$\mathrm{E}(2)$	30	26	33	32														
$\mathrm{~F}(1)$	20	30	38	33	36													
$\mathrm{G}(1)$	33	18	14	17	33	22												
$\mathrm{H}(1)$	22	25	14	17	33	22	60											
$\mathrm{I}(2)$	21	68	11	74	33	35	18	25										
$\mathrm{~J}(4)$	25	71	20	76	40	29	20	20	64									
$\mathrm{~K}(4)$	39	71	31	58	40	54	21	31	61	50								
$\mathrm{~L}(5)$	28	79	22	84	37	39	16	22	70	81	72							
$\mathrm{M}(4)$	29	65	24	79	47	33	24	24	65	85	67	84						
$\mathrm{~N}(2)$	27	39	30	60	31	33	30	18	47	45	29	50	44					
$\mathrm{O}(3)$	31	68	25	74	33	35	18	25	78	64	71	89	65	56				
$\mathrm{P}(3)$	29	74	24	89	32	41	17	17	74	61	67	94	70	44	74			
$\mathrm{R}(2)$	29	65	24	70	47	41	24	24	74	76	77	84	89	37	74	70		
$\mathrm{~S}(1)$	43	25	14	24	33	22	33	33	25	20	31	22	24	18	25	24	24	

jedno- i wielonurtowych wykazywały niski stopień podobieństwa (współczynnik Jaccarda wynosił średnio 28% - tab. 5.3). Znaczne różnice składu taksonomicznego zgrupowań bezkręgowców występowały także pomiędzy poszczególnymi przekrojami jednonurtowymi - średnia wartość współczynnika podobieństwa Jaccarda dla par takich przekrojów wynosiła 27% (tab. 5.3). W przekrojach jednonurtowych najczęściej notowano widelnice z rodzajów Perlodes i Perla cechujące się dużym zakresem tolerancji środowiskowej. Taksony te stwierdzono, odpowiednio, w pięciu i czterech takich przekrojach. Całkowicie brak było w tych przekrojach taksonów limnofilnych (Nematoda, Lumbricidae, Chironomidae, Tabanidae), a zadziwiająco rzadko występowały taksony reofilne, takie jak Crenobia alpina, larwy Heptagenia sp. i Goera sp., oraz ślimak Ancylus fluviatilis. Pierwszy z wymienionych taksonów stwierdzono w dwóch przekrojach jednonurtowych, zaś pozostałe w jednym przekroju. Spośród grup ekologicznych o różnym sposobie odżywiania jedynie drapieżniki i rozdrabniacze były obecne we wszystkich przekrojach jednonurtowych, a w pięciu z nich dodatkowo stwierdzono obecność filtratorów lub zbieraczy.

Ponieważ zgrupowania makrozoobentosu notowane w przekrojach wielonurtowych zawierały znacznie większą częś́ puli taksonów stwierdzonych w odcinku badawczym (tab. 5.2), w rezultacie wykazywały one stosunkowo wysoki stopień podobieństwa współczynnik Jaccarda obliczony dla poszczególnych par przekrojów wielonurtowych wynosił średnio 63% (tab. 5.3). W 11 spośród 12 badanych przekrojów wielonurtowych stwierdzono występowanie wszystkich pięciu grup ekologicznych (tj. drapieżniki, zbieracze, zgryzacze, rozdrabniacze i filtratory). W przeciwieństwie do wysokiego stopnia

Tabela 5.4. Wartości współczynnika Jaccarda (w procentach) przedstawiające podobieństwo taksonomiczne pomiędzy zgrupowaniami makrozoobentosu stwierdzonymi w poszczególnych korytach małej wody przekroju L.

	L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~L}_{4}$	$\mathrm{~L}_{5}$
$\mathrm{~L}_{1}$					
$\mathrm{~L}_{2}$	0				
$\mathrm{~L}_{3}$	0	10			
$\mathrm{~L}_{4}$	0	11	25		
$\mathrm{~L}_{5}$	13	0	17	18	

podobieństwa taksonomicznego pomiędzy przekrojami wielonurtowymi, zgrupowania makrozoobentosu stwierdzane w poszczególnych roztokach danego przekroju znacznie różniły się od siebie. Ilustrują to wartości współczynnika Jaccarda obliczone dla poszczególnych par roztok pięcionurtowego przekroju L. Wynoszą one od 0\% do 25\% (tab. 5.4), co wskazuje na występowanie odmiennych zespołów bezkręgowców w poszczególnych korytach małej wody, z niewielką liczbą wspólnych taksonów lub całkowitym ich brakiem (tab. 5.2). W wielonurtowych odcinkach rzeki większość roztok ($\mathrm{B}_{3}, \mathrm{D}_{3}, \mathrm{I}_{2}, \mathrm{~J}_{2}, \mathrm{~K}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}$, $\mathrm{M}_{1}, \mathrm{O}_{2}, \mathrm{P}_{3}$ i R_{2}) była zasiedlona przez taksony reofilne, którym towarzyszyła różna liczba taksonów eurytopowych, a w innych ($\mathrm{D}_{2}, \mathrm{I}_{1}, \mathrm{~J}_{1}, \mathrm{~J}_{4}$ i P_{1}) stwierdzano obecność taksonów limnofilnych, takich jak nicienie (Nematoda), dżdżownice (Lumbricidae), ochotkowate (Chironomidae) oraz larwy bąkowatych (Tabanidae), wraz z taksonami o szerokim zakresie tolerancji środowiskowej. Co ciekawe, w niektórych roztokach występowały zarówno taksony limnofilne, jak i reofilne ($\mathrm{B}_{1}, \mathrm{~L}_{5}, \mathrm{M}_{2}, \mathrm{O}_{1}, \mathrm{P}_{2}$ i R_{1}).

4.4.Zależności pomiędzy parametrami środowiskowymi a liczba taksonów makrozoobentosu

Dysponując zestawem szczegółowych pomiarów fizycznych parametrów siedliskowych w badanych przekrojach można było ustalić, czy zmienne te wyjaśniają obserwowane zróżnicowanie bogactwa taksonomicznego makrozoobentosu wśród tych przekrojów. Wyniki analizy regresji wskazują, że liczba taksonów bezkręgowców wzrastała liniowo wraz ze zmniejszaniem się średniej głębokości wody i wielkości ziarna materiału dennego, a także wraz ze wzrostem zróżnicowania głębokości wody, prędkości przepływu (zarówno średniej, jak i przydennej) i wielkości ziarna materiału dennego w przekroju rzeki. Inne badane parametry fizyczne nie wywierały istotnego wpływu na bogactwo taksonomiczne makrozoobentosu (tab. 5.5). Jednakże najsilniejszą zależność o największej istotności statystycznej wykazano w stosunku do liczby koryt małej wody w przekroju rzeki. Bogactwo taksonomiczne zespołów makrozoobentosu zwiększało się wraz ze wzrostem liczby tych koryt (tab. 5.5, ryc. 5.7) i zależność ta wyjaśniała 71\% zróżnicowania liczby taksonów bezkręgowców w badanych przekrojach.

Zależności pomiędzy fizycznymi parametrami siedliskowymi a liczbą taksonów makrozoobentosu zbadano również za pomocą analizy regresji wielokrotnej, pozwalającej na określenie wpływu kilku czynników o charakterze synergistycznym lub antagonistycznym w stosunku do zmiennej zależnej. Wykorzystano tu metodę regresji krokowej

Tabela 5.5. Wyniki analizy regresji liniowej dla zależności pomiędzy fizycznymi parametrami siedliskowymi a liczbą taksonów makrozoobentosu w badanych przekrojach Czarnego Dunajca. Pogrubioną czcionką wskazano zależności statystycznie istotne na poziomie $\mathrm{p}<0,05$.

Zmienna niezależna	Wartość beta	Współczynnik determinacji	Poziom istotności
Łączna szerokość koryt małej wody	$\mathrm{B}=0,41$	$\mathrm{R}^{2}=0,17$	$\mathrm{p}=0,09$
Głębokość wody - średnia	$\mathbf{B}=\mathbf{- 0 , 5 6}$	$\mathbf{R}^{2}=\mathbf{0 , 3 1}$	$\mathbf{p}=\mathbf{0 , 0 1 6}$
Głębokość wody - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 6 6}$	$\mathbf{R}^{2}=\mathbf{0 , 4 4}$	$\mathbf{p}=\mathbf{0 , 0 0 3}$
Średnia prędkość przepływu w pionie hydrometrycznym - średnia	$\mathrm{B}=-0,08$	$\mathrm{R}^{2}=0,01$	$\mathrm{p}=0,74$
Średnia prędkoś przepływu w pionie hydrometrycznym - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 5 1}$	$\mathbf{R}^{2}=\mathbf{0 , 2 6}$	$\mathbf{p = 0 , 0 3}$
Prędkość przydenna - średnia	$\mathrm{B}=0,13$	$\mathrm{R}^{2}=0,02$	$\mathrm{p}=0,60$
Prędkość przydenna - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 4 9}$	$\mathbf{R}^{2}=\mathbf{0 , 2 4}$	$\mathbf{p}=\mathbf{0 , 0 4}$
Średnia średnica ziarna - średnia	$\mathbf{B}=\mathbf{- 0 , 7 1}$	$\mathbf{R}^{2}=\mathbf{0 , 5 0}$	$\mathbf{p}=\mathbf{0 , 0 0 1}$
Średnia średnica ziarna - współczynnik zmienności	$\mathbf{B}=\mathbf{0 , 5 8}$	$\mathbf{R}^{2}=\mathbf{0 , 3 4}$	$\mathbf{p = 0 , 0 1}$
Liczba koryt małej wody	$\mathbf{B = 0 , 8 4}$	$\mathbf{R}^{2}=\mathbf{0 , 7 1}$	$\mathbf{p}=\mathbf{0 , 0 0 0 0 1}$

postępującej, pozwalając na wprowadzanie poszczególnych zmiennych do modelu, jeśli w końcowym równaniu regresji były one statystycznie istotne na poziomie $\mathrm{p}<0,05$. Otrzymano następujące równanie regresji:

LTB $=16,2+3,4 \times$ LK $-29 \times$ GEEB $-0,4 \times$ SZER $+10 \times$ WZPP

$$
\left(R^{2}=0,90 ; p=0,000003\right),
$$

gdzie LTB jest liczbą taksonów bezkręgowców w przekroju, LK - liczbą koryt małej wody, GŁĘB - średnią głębokością wody w przekroju (m), SZER - łączną szerokością koryt małej wody (m), zaś WZPP - współczynnikiem zmienności prędkości przydennej. Otrzymane równanie wskazuje, że jeśli inne parametry nie ulegały zmianie, to liczba taksonów bezkręgowców w przekroju wzrastała średnio o ponad 3 wraz z każdym

Ryc. 5.7. Wykres rozrzutu i linia regresji ustalona dla zależności pomiędzy liczbą koryt małej wody w badanych przekrojach Czarnego Dunajca i liczbą taksonów makrozoobentosu stwierdzonych w tych przekrojach. Według: Wyżga i in. [2011].

Fig. 5.7. Scatter plot and estimated regression relationship between the number of invertebrate taxa recorded in the investigated cross-sections of the Czarny Dunajec River and the number of flow threads in the cross-sections. After:
kolejnym korytem i o 1 przy wzroście współczynnika zmienności prędkości przydennej o 0,1 , natomiast malała o 1 przy każdym wzroście łącznej szerokości koryt o 2,5 m i o blisko 3 przy każdym wzroście średniej głębokości wody o $0,1 \mathrm{~m}$. Łącznie te cztery zmienne wyjaśniały 90% obserwowanego zróżnicowania liczby taksonów makrozoobentosu w badanych przekrojach. Średnia średnica ziarna materiału dennego, istotnie skorelowana z liczbą koryt w przekroju, okazała się zmienną nadmiarową w przyjętym modelu regresji, podobnie jak współczynniki zmienności głębokości wody i wielkości ziarna materiału dennego, skorelowane ze współczynnikiem zmienności prędkości przydennej.

5. Dyskusja

Badania przeprowadzone w górskiej rzece Czarny Dunajec wskazały na: (i) zmiany fizycznych warunków siedliskowych zachodzące wraz ze wzrastającą złożonością systemu przepływu oraz (ii) różnice warunków hydromorfologicznych pomiędzy jednonurtowymi odcinkami przekształconymi wskutek regulacji koryta i wcięcia się rzeki wywołanego wydobyciem żwiru a odcinkami wielonurtowymi pozostającymi w stosunkowo niezaburzonym stanie. Zwiększaniu się liczby koryt małej wody towarzyszy wzrost ich łącznej szerokości i zmniejszanie się wielkości ziarna materiału dennego. Przekroje wielonurtowe w dolnej części badanego odcinka cechują się wyraźnie drobniejszym materiałem dennym niż przekroje jednonurtowe zlokalizowane zarówno w wyższej, jak i niższej części tego odcinka. Różnica ta odzwierciedla nie tylko zmniejszanie się wielkości ziarna materiału dennego z biegiem rzeki, lecz jest również wynikiem różnic w szerokości aktywnego koryta [Wyżga i in., 2012], powodującej znaczące różnice jednostkowej mocy strumienia podczas przepływów wezbraniowych [Wyżga, Zawiejska, 2005; Wyżga, 2007]. Różnica wielkości ziarna materiału dennego pomiędzy jedno- i wielonurtowymi odcinkami rzeki uwydatnia się w trakcie niskich i średnich przepływów w wyniku depozycji drobnoziarnistych osadów na dnie mniej aktywnych odnóg.

Zwiększaniu się złożoności systemu przepływu towarzyszy również wzrost zróżnicowania głębokości wody, prędkości średniej i przydennej oraz wielkości ziarna materiału dennego w przekroju rzeki [por. Jähnig i in., 2008]. Przekroje jednonurtowe cechuje stopniowe przejście od płytkich siedlisk z wolno płynącą wodą do siedlisk głębokich o szybkim prądzie. Przekroje wielonurtowe cechują się znacznie większym zróżnicowaniem mierzonych parametrów fizycznych niż przekroje jednonurtowe i wykazują istotne różnice fizycznych warunków siedliskowych nie tylko pomiędzy poszczególnymi korytami małej wody, ale także w ich obrębie. W przekrojach tych występują różne kombinacje warunków siedliskowych; na przykład niskie prędkości przepływu i drobnoziarnisty materiał denny mogą występować zarówno w płytkich, jak i głębokich partiach koryta. Ponadto, znaczna miąższość drobnoziarnistych osadów wskazuje, że w niektórych bocznych odnogach warunki powolnego przepływu utrzymują się stosunkowo długo. Kontrastuje to z krótkotrwałym występowaniem takich warunków w korycie jednonurtowym [por. Negishi i in., 2002], o czym świadczy brak drobnoziarnistego osadu na powierzchni dna, nawet w przekrojach zlokalizowanych w plosach.

Niniejsze badania wskazały, że zespoły makrozoobentosu występujące w badanych przekrojach są częściami tej samej, zróżnicowanej i szerokiej puli taksonów, której
poszczególne elementy notowane były w różnych miejscach analizowanego odcinka rzeki. Nie jest to zaskoczeniem, biorąc pod uwagę podobne warunki geomorfologiczne, geologiczne i klimatyczne na całym tym odcinku [Kukulak, 1997] i brak dużych dopływów mogących wywołać zmiany w reżimie hydrologicznym rzeki. Brak ukierunkowanej zmiany składu taksonomicznego zespołów makrozoobentosu jest ważny, ponieważ pozwala interpretować różnice pomiędzy poszczególnymi zgrupowaniami bezkręgowców jako wynik eliminacji niektórych taksonów przez lokalne czynniki środowiskowe [por. Malmqvist, 2002]. Choć bezkręgowce denne w ciekach górskich są stosunkowo wrażliwe na zanieczyszczenia wody [Kownacki i in., 2002; Hering i in., 2006], obecność taksonów wskazujących na dobrą lub wysoką jakość wody we wszystkich badanych przekrojach, ich znaczny udział w strukturze każdego lokalnego zgrupowania i niewielka odległość pomiędzy sąsiednimi przekrojami o bardzo różnej liczbie taksonów wskaźnikowych świadczą, że pogorszenie się jakości wody nie było zasadniczym czynnikiem ograniczającym występowanie bezkręgowców dennych w badanym odcinku Czarnego Dunajca. Obserwowane tu różnice bogactwa taksonomicznego zgrupowań makrozoobentosu są natomiast przede wszystkim wynikiem zróżnicowania w stopniu złożoności fizycznych warunków siedliskowych wśród badanych przekrojów.

W przekrojach jednonurtowych niewielkiemu zróżnicowaniu fizycznych warunków siedliskowych towarzyszyło występowanie niewielkiej liczby, głównie eurytopowych, taksonów bezkręgowców dennych. Niewielkie zróżnicowanie typów podłoża i warunków hydraulicznych w obrębie tych przekrojów prawdopodobnie umożliwiało kolonizację dostępnych siedlisk tylko przez część puli taksonów makrozoobentosu występujących w odcinku badawczym. Na tę wstępną selekcję taksonów może wskazywać obecność w przekrojach jednonurtowych tylko części grup ekologicznych makrozoobentosu, których występowanie jest łatwiejsze do stwierdzenia przy ograniczonym poborze prób niż rzeczywistej liczby taksonów [Bady i in., 2005]. Wąskie, uregulowane odcinki rzek cechuje stosunkowo szybki wzrost prędkości przy wzrastającym natężeniu przepływu [Negishi i in., 2002] i ten fakt, w połączeniu z brakiem lub nielicznym występowaniem refugiów umożliwiających bezkręgowcom uniknięcie szybkiego prądu wody, mógł tu spowodować dalszy spadek bogactwa taksonomicznego zespołów bezkręgowców w okresie podwyższonych stanów wody [por. Negishi i in., 2002]. Chociaż istnienie strefy hyporeicznej może zapewniać schronienia dla bezkręgowców dennych podczas wezbrań, pozwalając na późniejszą rekolonizację dna rzeki [Brunke, Gonser, 1997], ten mechanizm odbudowy zespołów makrozoobentosu nie jest możliwy w jednonurtowych, wciętych odcinkach Czarnego Dunajca, gdzie skalne podłoże jest pokryte jedynie cienką warstwą gruboziarnistych aluwiów [Zawiejska, Wyżga, 2010]. Obserwacje terenowe wskazały, że pobór prób poprzedziło wystąpienie niewielkiej fali wezbraniowej spowodowanej okresowym tajaniem śniegu w miesiącach zimowych, kiedy to ponowne zasiedlenie dna rzeki przez owady było niemożliwe. Zubożenie wyjściowych zespołów makrozoobentosu w czasie tej lub wcześniejszych fal wezbraniowych może tłumaczyć stosunkowo małą liczbę taksonów stwierdzonych w badanych przekrojach i - przede wszystkim - niewielkie podobieństwo struktury taksonomicznej zgrupowań bezkręgowców pomiędzy poszczególnymi przekrojami jednonurtowymi, odzwierciedlone w niskich wartościach współczynnika Jaccarda.

Przekroje wielonurtowe, wykazujące większe zróżnicowanie fizycznych parametrów siedliskowych, były zasiedlone przez przedstawicieli wszystkich pięciu grup ekologicznych bezkręgowców dennych i istotnie większą liczbę taksonów niż przekroje jednonurtowe. Przy większym zakresie warunków siedliskowych oraz większym zróżnicowaniu płatów hydraulicznych (tj. obszarów koryta o jednakowych warunkach przepływu i materiale dennym - zob. Thomson i in., 2001) pomiędzy poszczególnymi korytami małej wody, a także w obrębie części z nich, wielonurtowe odcinki rzeki mogły być zasiedlane nie tylko przez taksony eurytopowe, lecz również przez bezkręgowce preferujące siedliska lenityczne lub lotyczne. Te zróżnicowane warunki siedliskowe zwiększały możliwość występowania taksonów o specyficznych wymaganiach ekologicznych, obniżając w ten sposób konkurencję z taksonami oportunistycznymi [Thorup, 1966; Protasow, 1994]. Ponadto, wolniejszy w szerszych korytach wzrost prędkości przy wzrastającym natężeniu przepływu [por. Leopold, Maddock, 1953] i stosunkowo długotrwałe utrzymywanie się powolnego przepływu w bocznych odnogach ułatwiały bezkręgowcom znalezienie refugiów i ucieczkę przed silnym prądem wody, zmniejszając tym samym potencjalny spadek liczby taksonów w czasie wezbrań. We wciętej części odcinka badawczego, gdzie dno koryta małej wody jest wyścielone tylko cienką warstwą gruboziarnistego osadu, obecność łach śródkorytowych pozwala bezkręgowcom na ukrycie się w przestrzeniach porowych żwirów łach przy podwyższonych stanach wody.

Zaobserwowana zależność pomiędzy fizycznymi warunkami w korycie Czarnego Dunajca a liczbą taksonów makrozoobentosu jest najprawdopodobniej wyrazem rzeczywistych związków pomiędzy morfologią koryta, warunkami siedliskowymi i biocenozami rzecznymi [Smiley, Dibble, 2005]. Dane zamieszczone w tej pracy wskazują na zależność taksonomicznego bogactwa zespołów bezkręgowców dennych w rzece od stopnia zróżnicowania głębokości wody, prędkości przepływu i wielkości ziarna materiału dennego, nie wskazują jednak na jego zależność od łącznej szerokości koryt małej wody. Pokazuje to, że większa różnorodność makrozoobentosu, odnotowana w wielonurtowych odcinkach rzeki, wynika z większego zróżnicowania siedliskowego, a nie powiększenia zasięgu siedlisk w tych odcinkach. Dowodem na kluczową rolę zróżnicowania siedliskowego dla kształtowania bogactwa gatunkowego zgrupowań bezkręgowców jest istotnie większa średnia liczba taksonów notowanych w poszczególnych odnogach przekrojów wielonurtowych niż w przekrojach jednonurtowych. Nie przypadkiem zależność od liczby koryt małej wody w przekroju rzeki wyjaśniała znacznie większą częśćc całkowitej wariancji liczby taksonów makrozoobentosu niż modele regresji określone dla pojedynczych parametrów fizycznych. Wzrastającej złożoności systemu przepływu towarzyszy większe zróżnicowanie wielu parametrów środowiskowych, takich jak jakość wody, w tym także ilość rozpuszczonego tlenu [Fernald i in., 2006], temperatura wody [Arscott i in., 2001], ilość zdeponowanego rumoszu drzewnego [Gurnell i in., 2000; Wyżga, Zawiejska, 2005], opadłych liści i materii organicznej, które wraz z parametrami mierzonymi w niniejszym studium determinują różnorodność siedlisk rzecznych. Ta zwiększona różnorodność siedlisk jest korzystna dla wielu taksonów bezkręgowców i - wraz z większą trwałością warunków powolnego przepływu i większą dostępnością refugiów w przekrojach wielonurtowych - wyjaśnia silną zależność liczby taksonów makrozoobentosu od liczby koryt małej wody w rzece.

6. Uwagi końcowe

Przeprowadzone badania wykazały że różnicom stopnia złożoności systemu przepływu w Czarnym Dunajcu towarzyszą istotne różnice w stopniu heterogeniczności siedlisk rzecznych i różnorodności zespołów makrozoobentosu. Przekroje jednonurtowe, przekształcone wskutek regulacji koryta i wcinania się rzeki, cechowały się stosunkowo niewielkim zróżnicowaniem warunków siedliskowych i były zasiedlone przez nieliczne taksony bezkręgowców dennych, złożone głównie z eurytopów i reprezentujące tylko niektóre grupy ekologiczne wyróżnione pod kątem sposobu odżywiania. Natomiast tam, gdzie zachowany został wielonurtowy układ koryta, badane przekroje charakteryzowały się dużym zróżnicowaniem warunków siedliskowych, z różnymi kombinacjami głębokości wody, prędkości przepływu i wielkości ziarna materiału dennego. Takie przekroje były zasiedlone przez bardziej zróżnicowane zespoły makrozoobentosu, z taksonami charakterystycznymi zarówno dla siedlisk lotycznych, jak i lenitycznych, i reprezentującymi wszystkie grupy ekologiczne.

Stwierdzone zależności liczby taksonów bezkręgowców od stopnia złożoności (heterogeniczności) środowiska rzecznego [por. Taniguchi, Tokeshi, 2004] wskazują, że oprócz pogorszenia jakości wody, także uproszczenie systemu przepływu i morfologii rzek górskich wskutek działalności człowieka musi być traktowane jako bardzo istotna przyczyna degradacji ich biocenoz. Zasadniczo, wyniki niniejszego studium potwierdzają te uzyskane podczas wcześniejszych badań nad zależnością stanu ichtiofauny Czarnego Dunajca od hydromorfologicznej jakości rzeki [Wyżga i in., 2009]. W reakcji obu grup organizmów na działalność człowieka występują jednak istotne różnice, co podkreśla konieczność monitorowania stanu różnych grup systematycznych przy ocenie ekologicznego stanu cieków [Jungwirth i in., 2000; Hering i in., 2006]. Przekroje we wciętym odcinku rzeki, zarówno jedno-, jak i wielonurtowe, były zasiedlone przez zaledwie dwa gatunki ryb, podczas gdy w odcinkach nieprzekształconych występowały cztery, przy czym wcięcie się rzeki spowodowało zanik niektórych gatunków w przeciągu ostatnich trzech dziesięcioleci. Znaczny wzrost wielkości ziarna materiału dennego, towarzyszący wcięciu się rzeki, najprawdopodobniej utrudnił odbywanie tarła, zaś przegrodzenie rzeki w uregulowanej, środkowej części odcinka badawczego szeregiem betonowych stopni uniemożliwiło migrację ryb z niższych odcinków o wysokich walorach siedliskowych [Wyżga i in., 2009]. Z kolei, zespoły makrozoobentosu z wciętej, górnej części odcinka badawczego wykazywały małą różnorodność jedynie w przekrojach jednonurtowych, podczas gdy zarówno taksonomiczne, jak i funkcjonalne zróżnicowanie tej grupy organizmów w przekrojach wielonurtowych było tu podobne, jak w przekrojach zlokalizowanych w nieprzekształconym odcinku rzeki. Najwyraźniej zróżnicowanie siedliskowe wielonurtowych, wciętych odcinków rzeki jest wystarczające do utrzymania zróżnicowanych zespołów bezkręgowców i nawet jeśli niektóre taksony zostaną tymczasowo usunięte z takich odcinków w czasie wezbrań, postacie imaginalne owadów - zdolne do powietrznej dyspersji [Malmqvist, 2002] mogą ponownie rekolonizować odpowiednie siedliska dotąd, dopóki dane bezkręgowce są obecne w lokalnej puli taksonów.

Znaczne zubożenie zespołów ichtiofauny [Wyżga i in., 2009] i makrozoobentosu w Czarnym Dunajcu - będące rezultatem uproszczenia systemu przepływu i wyni-
kającej z niego homogenizacji fizycznych warunków siedliskowych - wskazuje, że przyszła odbudowa tych zespołów w tej i innych przekształconych rzekach górskich będzie wymagała odtworzenia złożonej morfologii koryta. Co ważne, wyniki badań nad stanem obu grup organizmów pozwalają na sformułowanie uzupełniających się wskazań dotyczących niezbędnych działań rewitalizacyjnych w Czarnym Dunajcu. Zwiększenie zróżnicowania siedlisk i dostępności refugiów dla bezkręgowców dennych i ryb będzie wymagało odtworzenia utraconej bocznej łączności ekosystemu rzecznego w odcinkach uregulowanych i wciętych. We wciętych odcinkach rzeki konieczne będzie zmniejszenie prędkości przepływu dla umożliwienia akumulacji osadów i zmniejszenia wielkości ziarna materiału dennego. Odtworzyłoby to strefę hyporeiczną i przywróciło pionową łączność ekosystemu rzecznego w tych odcinkach, z korzyścią dla zespołów bezkręgowców [Boulton, 2007], a także przywróciłoby możliwość odbywania tarła przez ryby litofilne. Wreszcie, usunięcie niepotrzebnych stopni i budowa przepławek dla ryb w odcinku uregulowanym będą kluczowe dla przywrócenia podłużnej łączności rzeki. Wynika z tego, że znacząca poprawa ekologicznej jakości rzeki przekształconej wskutek regulacji i pogłębienia się koryta nie jest możliwa bez przywrócenia trójwymiarowej łączności ekosystemu rzecznego [Kondolf i in., 2006; Jansson i in., 2007].

Powẏ̇sze studium sfinansowano ze środków na nauke w latach 2010-2013 w ramach realizacji projektu badawczego nr N N305 097239.

Piśmiennictwo

Arscott D.B., Tockner K., Ward J.V., 2001: Thermal heterogeneity along a braided floodplain river in the Alps (Tagliamento River, N.E. Italy). Canadian Journal of Fisheries and Aquatic Sciences, 58, 2350-2373.
Bady P., Dolédec S., Fesl C., Gayraud S., Bacchi M., Schöll F., 2005: Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshwater Biology, 50, 159-173.
Baumgart-Kotarba M., 1992: Rozwój geomorfologiczny Kotliny Orawskiej w warunkach ruchów neotektonicznych. Studia Geomorphologica Carpatho-Balcanica, 25/26, 3-28.
Bojarski A., Jeleński J., Jelonek M., Litewka T., Wyżga B., Zalewski J., 2005: Zasady dobrej praktyki w utrzymaniu rzek i potoków górskich. Ministerstwo Środowiska, Warszawa.
Boulton A.J. 2007: Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology, 52, 632-650.

Bravard J.P., Petts G.E., 1996: Human impacts on fluvial hydrosystems. [w:] G.E. Petts, C. Amoros (red.), Fluvial Hydrosystems. Chapman and Hall, London, 242-262.
Bravard J.P., Amoros C., Pautou G., Bornette G., Bournaud M., Creuzé des Châtelliers M., Gibert J., Peiry J.L., Perrin J.F., Tachet H., 1997: River incision in South-east France: morphological phenomena and ecological effects. Regulated Rivers: Research and Management, 13, 75-90.
Brunke M., Gonser T., 1997: The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37, 1-33.

Cummins K.W., Klug M.J., 1979: Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics, 10, 147-172.
Diplas P., Sutherland A.J., 1988: Sampling techniques for gravel sized sediments. Journal of Hydraulic Engineering, 114, 484-501.
Dudziak J., 1965: Dzika eksploatacja kamienia w powiecie nowotarskim. Ochrona Przyrody, 31, 161-187.
Dumnicka E., Jelonek M., Klich M., Kwandrans J., Wojtal A., Zurek R., 2006: Ichtiofauna i status ekologiczny wód Wisty, Raby, Dunajca i Wisłoki. Instytut Ochrony Przyrody PAN, Kraków.
Fernald A.G., Landers D.H., Wigington P.J., 2006: Water quality changes in hyporheic flow paths between a large gravel bed river and off-channel alcoves in Oregon, USA. River Research and Applications, 22, 1111-1124.
Fiałkowski W., Furse M.T., Jones J.I., Kłonowska-Olejnik M., 2005: Wykorzystanie zespołów makrozoobentosu w ocenie stanu ekologicznego rzek. Uniwersytet Jagielloński, Kraków.
Folk R.L., Ward W.C., 1957: Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3-26.
Gurnell A.M., Petts G.E., Harris N., Ward J.V., Tockner K., Edwards P.J., Kollmann J., 2000: Large wood retention in river channels: the case of the Fiume Tagliamento, Italy. Earth Surface Processes and Landforms, 25, 255-275.
Habersack H., Piégay H., 2008: River restoration in the Alps and their surrounding: past experience and future challenges. [w:] H. Habersack, H. Piégay, M. Rinaldi (red.), Gravel-Bed Rivers VI - From Process Understanding to River Restoration. Elsevier, Amsterdam, 703-737.
Hawkes H. A., 1998: Origin and development of the Biological Monitoring Working Party Score System. Water Research, 32, 964-968.
Hering D., Johnson R.K., Kramm S., Schmutz S., Szoszkiewicz K., Verdonschot P.F.M., 2006: Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metricbased analysis of organism response to stress. Freshwater Biology, 51, 1757-1785.
Hillman H., Brierley G., 2005: A critical review of catchment-scale stream rehabilitation programmes. Progress in Physical Geography, 29, 50-76.

Hynes H.B.N., 1970: The Ecology of Running Waters. Toronto Univ. Press, Toronto.
Jansson R., Nilsson C., Malmqvist B., 2007: Restoring freshwater ecosystems in riverine landscapes: the roles of connectivity and recovery processes. Freshwater Biology, 52, 589-596.
Jähnig S.C., Lorenz A., Hering D., 2008: Hydromorphological parameters indicating differences between single- and multiple-channel mountain rivers in Germany, in relation to their modification and recovery. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 1200-1216.
Jungwirth M., Muhar S., Schmutz S., 2000: Assessing the Ecological Integrity of Running Waters. Kluwer, Dordrecht.
Kołodziejczyk A., Koperski P., 2000: Bezkręgowce stodkowodne Polski. Klucz do oznaczania oraz podstawy biologii i ekologii makrofauny. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
Komisja Europejska, 2000: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L324(43), 1-72.
Kondolf G.M., 1997: Hungry water: effects of dams and gravel mining on river channels. Environmental Management, 21, 533-551.
Kondolf G.M., Boulton A.J., O'Daniel S., Poole G.C., Rahel F.J., Stanley E.H., Wohl E., Bång A., Carlstrom J., Cristoni C., Huber H., Koljonen S., Louhi P., Nakamura K., 2006: Process-based ecological river
restoration: Visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecology and Society, 11, 5.
Korpak J., 2007: The influence of river training on mountain channel changes. Geomorphology, 92, 166-181.
Kownacki A., 2003: Stan i perspektywy badań zoobentosu w rzekach. Idee Ekologiczne, 15, 25-35.
Kownacki A., Soszka H., Fleituch T., Kudelska D., 2002: River Biomonitoring and Benthic Invertebrate Communities. Państwowy Instytut Ochrony Środowiska, Warszawa.
Krzemień K., 2003: The Czarny Dunajec River, Poland, as an example of human-induced development tendencies in a mountain river channel. Landform Analysis, 4, 57-64.
Kukulak J., 1997: Środowisko przyrodnicze. [w:] F. Kiryk (red.), Czarny Dunajec i okolice. Wydawnictwo Secesja, Kraków, 13-56.
Lach J., Wyżga B., 2002: Channel incision and flow increase of the upper Wisłoka River, southern Poland, subsequent to the reafforestation of its catchment. Earth Surface Processes and Landforms, 27, 445-462.
Lampert W., Sommer U., 2007: Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, Oxford.
Larsen D.P., Herlihy A.T., 1998: The dilemma of sampling streams for macroinvertebrate richness. Journal of the North American Benthological Society, 17, 359-366.
Leopold L.B., Maddock T., 1953: The hydraulic geometry of stream channels and some physiographic implications. US Geological Survey Professional Paper, 252, 1-57.
Liébault F., Piégay H., 2001: Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology, 36, 167-186.
Lüderitz V., Jüpner R., Müller S., Feld C.K., 2004: Renaturalization of streams and rivers - the special importance of integrated ecological methods in measurement of success. An example from SaxonyAnhalt (Germany). Limnologica, 34, 249-263.
Malmqvist B., 2002: Aquatic invertebrates in riverine landscapes. Freshwater Biology, 47, 679-694.
McCafferty W.P., 1998: Aquatic Entomology: The Fisherman's and Ecologist's Illustrated Guide to Insects and Their Relatives. Jones and Burtlett Publisher, Sadbury, Massachusetts.
Muhar S., Jungwirth M., 1998: Habitat integrity of running waters - assessment criteria and their biological relevance. Hydrobiologia, 386, 195-202.
Muhar S., Jungwirth M., Unfer G., Wiesner C., Poppe M., Schmutz S., Hohensinner S., Habersack H., 2008: Restoring riverine landscapes at the Drau River: successes and deficits in the context of ecological integrity. [w:] H. Habersack, H. Piégay, M. Rinaldi (red.), Gravel-Bed Rivers VI - From Process Understanding to River Restoration. Elsevier, Amsterdam, 779-807.
Negishi J.N., Inoue M., Nunokawa M., 2002: Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan. Freshwater Biology, 47, 1515-1529.
Protasow A.A., 1994: Composition and functioning of benthic communities. Archives of Polish Fisheries, 2, 257-284.
Radecki-Pawlik A., 2002: Pobór żwiru i otoczaków z dna potoków górskich. Aura, 2, 17-19.
Rinaldi M., Wyżga B., Surian N., 2005: Sediment mining in alluvial channels: physical effects and management perspectives. River Research and Applications, 21, 805-828.
Roux A.L., Bravard J.P., Amoros C., Pautou G., 1989: Ecological changes of the French upper Rhône River since 1750. [w:] G.E. Petts (red.), Historical Change of Large Alluvial Rivers, Western Europe. Wiley, Chichester, 323-350.

Shirazi M.A., Faustini J.M. Kaufmann P.R., 2009: Streambed gravel sampling and frequency base conversion: A solution to data set sharing. Water Resources Research, 45, W01414.
Smiley P.C., Dibble E.D., 2005: Implications of a hierarchical relationship among channel form, instream habitat and stream communities for restoration of channelized streams. Hydrobiologia, 548, 279-292.
Surian N., Rinaldi M., 2003: Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50, 307-326.
Taniguchi H., Tokeshi M., 2004: Effects of habitat complexity on benthic assemblages in a variable environment. Freshwater Biology, 49, 1164-1178.
Thomson J.R., Taylor M.P., Fryirs K.A., Brierley G.J., 2001: A geomorphological framework for river characterization and habitat assessment. Aquatic Conservation: Marine and Freshwater Ecosystems, 11, 373-389.
Thorup J., 1966: Substrate-type and its value as a basis for the delimitation of bottom fauna communities in running waters. Pymatuning Laboratory of Ecology Special Publications, 4, 59-74.
Tockner K., Ward J.V., Arscott D.B., Edwards P.J., Kollmann J., Gurnell A.M., Petts G.E., Maiolini B., 2003: The Tagliamento River: A model ecosystem of European importance. Aquatic Sciences, 65, 239-253.
Vaughan I.P., Diamond M., Gurnell A.M., Hall K.A., Jenkins A., Milner N.J., Naylor L.A., Sear D.A., Woodward G., Ormerod S.J., 2009: Integrating ecology with hydromorphology: a priority for river science and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 19, 113-125.
Wiśniewolski W, 2005: Odtwarzanie ekologicznej ciągłości rzek i szlaków migracji ryb. [w:] L. Tomiałojć, A. Drabiński (red.), Środowiskowe aspekty gospodarki wodnej. Komitet Ochrony Przyrody PAN, Wrocław, 295-319.
Wohl E., 2006: Human impacts to mountain streams. Geomorphology, 79, 217-248.
Wyżga B., 1993: River response to channel regulation: case study of the Raba River, Carpathians, Poland. Earth Surface Processes and Landforms, 18, 541-556.
Wyżga B., 2001: A geomorphologist's criticism of the engineering approach to channelization of gravel-bed rivers: case study of the Raba River, Polish Carpathians, Environmental Management, 28, 341-358.
Wyżga B., 2007: Gruby rumosz drzewny: depozycja w rzece górskiej, postrzeganie i wykorzystanie do rewitalizacji cieków. Instytut Ochrony Przyrody PAN, Kraków.
Wyżga B., 2008: A review on channel incision in the Polish Carpathian rivers during the 20th century. [w:] H. Habersack, H. Piégay, M. Rinaldi (red.), Gravel-Bed Rivers VI - From Process Understanding to River Restoration, Elsevier, Amsterdam, 525-555.
Wyżga B., Zawiejska J., 2005: Wood storage in a wide mountain river: case study of the Czarny Dunajec, Polish Carpathians. Earth Surface Processes and Landforms, 30, 1475-1494.
Wyżga B., Amirowicz A., Radecki-Pawlik A., Zawiejska J., 2009: Hydromorphological conditions, potential fish habitats and the fish community in a mountain river subjected to variable human impacts, the Czarny Dunajec, Polish Carpathians. River Research and Applications, 25, 517-536.
Wyżga B., Oglęcki P., Radecki-Pawlik A., Zawiejska J., 2011: Diversity of macroinvertebrate communities as a reflection of habitat heterogeneity in a mountain river subjected to variable human impacts. [w:] A. Simon, S.J. Bennett, J.M. Castro (red.), Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses and Tools. American Geophysical Union, Washington, 189-207.

Wyżga B., Hajdukiewicz H., Zawiejska J., Radecki-Pawlik A., Mikuś P, 2012: Site 2.2. Chochołów - human-induced changes in channel sedimentation in a mountain river. [w:] B. Wyżga, J. Zawiejska, M. Lehotský (red.), International Field Seminar 'Processes and Patterns in Highly Dynamic Mountain Fluvial Systems', 2-4 June, 2012, Stará Lesná - Zakopane, 15-18.
Zawiejska J., Krzemień K., 2004: Human impact on the dynamics of the upper Dunajec River channel: a case study. Geograficky Časopis, 56, 111-124.
Zawiejska J., Wyżga B., 2010: Twentieth-century channel change on the Dunajec River, southern Poland: patterns, causes and controls. Geomorphology, 117, 234-246.

Diversity of macroinvertebrate communities as a reflection of habitat heterogeneity in a mountain river subjected to variable human impacts

Abstract

Summary

Most sections of the Czarny Dunajec River, Polish Carpathians, have been considerably modified by channelization and gravel mining-induced channel incision. As a result, the river morphology now varies from a single-thread, incised, or regulated channel to an unmanaged, multi-thread channel. For 18 cross-sections with one to five flow threads, diversity of benthic invertebrate communities was determined and compared with low-flow channel width and the variation in flow depth, velocity, and bed material size. The increased number of flow threads in a cross-section was associated with a larger aggregated width of low-flow channels and greater complexity of physical habitat conditions. Single-thread cross-sections hosted four to seven invertebrate taxa, mostly eurytopic, which represented two or three functional feeding groups. In multi-thread cross-sections, 7 to 19 taxa were recorded, with the assemblages representing all five functional groups of invertebrates and comprising taxa typical of both lentic and lotic habitats, sometimes within the same braids. The number of invertebrate taxa increased linearly with increasing number of low-flow channels in a cross-section and variation in flow depth, velocity, and bed material grain size, while it was unrelated to flow width. Thus, it is the increase in habitat heterogeneity rather than simple habitat enlargement that supported the increased diversity of macroinvertebrate fauna in the multi-thread cross-sections. This study shows that the simplification of flow pattern and the resultant homogenization of physical habitat conditions, caused by human impacts, is reflected in notable impoverishment of invertebrate communities and that restoration of morphological complexity of the river will be necessary for future recovery of these communities.

> Bartłomiej Wyżga - Instytut Ochrony Przyrody PAN, al. Mickiewicza 33, 31-120 Kraków, wyzga@iop.krakow.pl Paweł Oglęcki - Wydzial Inżynierii i Kształtowania Srodowiska, Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa, oglecki@ poczta.onet.pl Artur Radecki-Pawlik - Katedra Inżynierii Wodnej i Geotechniki, Uniwersytet Rolniczy w Krakowie, al. Mickiewicza 24/28, 30-059 Kraków, rmradeck@cyf-kr.edu.pl Joanna Zawiejska - Instytut Geografii, Uniwersytet Pedagogiczny w Krakowie, ul. Podchorążych 2, 30-084 Kraków, zawiejska.joanna@gmail.com

