DIATOMS OF THE WYŻYNA KRAKOWSKO-CZĘSTOCZOWSKA UPLAND (S POLAND) – COSCINODISCOPHYCEAE (THALASSIOSIOPHYCIDAЕ)

AGATA ZOFIA WOJTAL & JANINA KWANDRANS

Abstract. The paper describes centric diatoms of the class Coscinodiscophyceae (Thalassiosirophyceae) identified in materials collected from springs and streams of the Wyżyna Krakowsko-Częstochowska upland in 1993–2005, supplemented by records from related literature. The presence of 20 species belonging to seven genera is confirmed. Among them, taxa new to the Polish diatom flora were observed, including Thalassiosira duostra Pienaar, Skeletonema potamos (Weber) Hasle and Cyclotella delicatula Hustedt, along with several taxa very rarely reported from Poland, such as Thalassiosira guillardii Hasle, Cyclostephanos delicatus (Genkal) Casper & Scheffler and C. invisitatus (Hohn & Hellermann) Theriot, Stoermer & Håkansson, and five species new for the studied area. LM and SEM micrographs document all the species recorded in the materials collected. Comments accompany most of the taxa, and dot maps of the distribution of some species are given.

Key words: Bacillariophyta, Centrales, taxonomy, ecology, springs, running waters, distribution

Agata Zofia Wojtal, Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, PL-31-512 Kraków, Poland; e-mail: wojtal@ib-pan.krakow.pl
Janina Kwandrans, Institute of Nature Conservation, Department of Freshwater Biology, Polish Academy of Sciences, Al. Mickiewicza 33, PL-31-120 Kraków, Poland; e-mail: kwandrans@iop.krakow.pl

INTRODUCTION

The Wyżyna Krakowsko-Częstochowska upland is one of the phycologically best-investigated areas in Poland. Recent floristic and taxonomic studies investigated Euglenophyta (Wołowski 1998), Chrysophyceae (Cabała 2002) and diatoms (Wojtal 2001, 2003a, b, 2004; Wojtal & Sobczyk 2006). The initial data on Thalassiosirophyceae identified from the Wyżyna Krakowsko-Częstochowska upland originate from a floristic work by Raciborski (1888), in which Cyclotella kuetzingiana Thwaites and C. operculata Kützing were reported. Up to now, data on 15 taxa of three genera have been published (Kawecka & Kwandrans 2000; Siemińska & Wołowski 2003). The present study extends the list to 20 species of seven genera. Cyclostephanos tholiformis Stoermer, Håkansson & Theriot, Stephanodiscus hantzschii Grunow fo. tenuis (Hustedt) Håkansson & Stoermer, S. medius Håkansson, Håkansson & Theriot and S. parvus Stoermer & Håkansson are here included in Cyclostephanos delicatus (Genkal) Casper & Scheffler, Stephanodiscus hantzschii Grunow, S. alpinus Hustedt, and S. minutulus (Kützing) Grunow in Cleve et Möller, respectively. All identified taxa are briefly described and documented by LM and SEM photographs, and data on their taxonomy, ecology and distribution are provided.

The occurrence of four of 15 earlier-reported taxa was not confirmed. Without reinvestigation of the material, the identity of the diatom determined as Cyclotella comta (Ehrenberg) Kützing by Siemińska (1947), Turoboyski (1962), Kadłubowska (1964) and Hojda (1971) remains uncertain, due to recent changes of the species concept (e.g., Håkansson 2002). The historical report of Cyclotella astraea (Ehrenberg) Kützing [= Stephanodiscus astraea (Ehrenberg) Grunow] (Siemińska 1947), identified according to the species concept of that time, is also doubtful. The occurrence of the two other species – Cyclotella...
kuetzingiana Thwaites (Raciborski 1888; Gutowiński 1895; Turoboyski 1962; Kadłubowska 1964), and Thalassiosira weissflogii (Grunow) Fryxell & Hasle (Kawecka & Kwandrans 2000) – is more reliable, but they were not detected in our materials.

The species richness of diatoms of the Thalassiosirophycidae reported so far from the Wyżyna Krakowsko-Częstochowska upland is low, due to the general absence of lakes or water reservoirs, considered to be the habitats most conducive to the growth of most centric diatoms. Another problem involves difficulties in precisely identifying these diatoms. For reliable identification of many taxa such as Thalassiosira pseudonana Hasle & Heimdal, Discostella pseudostelligera (Hustedt) Houk & Klee and Stephanodiscus agassizensis Håkansson & Kling, electron microscopy studies are needed. Even the most common diatom representatives of the Thalassiosirophycidae are characterized by great morphological variability dependent on environmental conditions (e.g., Yang & Duthie 1993; Wunsam et al. 1995; Håkansson & Chepurnov 1999; Hausmann & Lotter 2002) and the stage of the life cycle (e.g., Håkansson & Chepurnov 1999; Håkansson 2002; Kato et al. 2003), and valve heterogeneity is a feature of several genera (e.g., Håkansson 2002; Houk & Klee 2004).

Moreover, recent detailed work suggests that some widespread and common species may constitute a complex of multiple, reproductively isolated sexual species of very similar or even the same frustule morphology, as reported in Cyclotella meneghiniana Kützing (Beszteri et al. 2005). Until biological and morphological differences are clarified, the presence of certain morphotypes, possibly environmentally induced, could be used for practical purposes, for example in water quality monitoring or palaeoreconstruction.

STUDY AREA, MATERIAL AND METHODS

The Wyżyna Krakowsko-Częstochowska upland extends from the Carpathian foothills in the vicinity of Kraków in the south, to the town of Częstochowa in the north (Fig. 1). The area covers 2650 km², extending ca 80 km north-south and ca 20 km east-west, with average elevation of 350 m a.s.l. (Kondracki 1994). According to the new geographical division of Polish uplands, the area of the Brama Krakowska gate (including Kraków and the Vistula River) is outside the Wyżyna Krakowsko-Częstochowska upland (Kondracki 2000). Because the Vistula River was considered a natural border of the upland for many years (e.g., Dynowska 1983), and consequently included in phycological surveys of the upland (e.g., Wołowski 1998), we incorporated material and literature sources relating to diatoms reported from the upland area as treated by Dynowska (1983).
The southern part of the region is rich in springs and streams, but lies near large, densely populated industrial centers. Most of the waters are eutrophic as a result of human activity, and some of them are also impacted by modification of river channels, construction of weirs or other work (e.g., Kwandrans et al. 1998; Kawecka & Kwandrans 2000). The Vistula River carries high loads of organic pollutants and salts (e.g., Dumnicka 1988, 2002; Kawecka & Kwandrans 2000). The northern part of the upland is poor in aquatic habitats.

Water conductivity was moderate, in the range of 292–569 μS cm⁻¹, and pH values generally oscillated around 7, except for the sinkhole in Kusięta and the Vistula River, where in July 2005 conductivity was 112 and 1620 μS cm⁻¹, and pH reached 4.8 and 8.2, respectively.

This paper is based on material collected from the upland in 1993–2005 from 20 localities (Fig. 1, Table 1), supplemented by data from the Iconotheca of Algae of the Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, the Catalogue of Polish Procraryotic and Eukaryotic Algae (Siemińska & Wołowski 2003), and available information published up to 2006 (taxa identified to generic level were not considered). Samples for detailed taxonomic analysis were prepared and cleaned by standard techniques (Krammer & Lange-Bertalot 1986). The density of valve face structures (e.g., costae) per 10 μm on a line tangential to the radius was calculated from the formula \(\tau = \frac{10n}{\pi D} \) (Genkal 1977), where \(n \) is the total number of structures, \(D \) is valve face diameter, and \(\tau \) is the number of structures per 10 μm.

Light microscopy observations employed a Nikon Optiphot microscope equipped with differential interference contrast. SEM observations of cleaned, gold-coated material employed a Philips scanning electron microscope. Most of the SEM micrographs were made in the Institute of Metallurgy and Materials Science, Polish Academy of Sciences, and the Laboratory of Field Emission, Scanning Electron Microscopy and Microanalysis at the Institute of Geological Sciences of the Jagiellonian University. The basic determination of a particular diatom taxa’s ecology follows Denys (1991), Krammer and Lange-Bertalot (1991) and Van Dam et al. (1994). Measurements of conductivity and pH were made in situ using a CC-102 conductivity meter and a CC-103 pH meter (Elmetron). The studied material is deposited in the collection of the Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

In the list an asterisk (*) precedes the names of species new for the area, and a double asterisk (**) precedes spe-

Table 1. Occurrence of diatoms of the Coscinodiscophyceae recorded at 20 localities (1–20 as on Fig. 1) in Wyżyna Krakowsko-Częstochowska upland.

| Species/ Locality | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|--------------------------------|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|
| Thalassiosira duostra | | | | | | | | | | | | | | | | | | | | |
| Thalassiosira guillardii | | | | | | | | | | | | | | | | | | | | |
| Thalassiosira pseudonana | | | | | | | | | | | | | | | | | | | | |
| Skeletonema potamos | | | | | | | | | | | | | | | | | | | | |
| Skeletonema subsalsum | | | | | | | | | | | | | | | | | | | | |
| Cyclotella atomus | | | | | | | | | | | | | | | | | | | | |
| Cyclotella delicatula | | | | | | | | | | | | | | | | | | | | |
| Cyclotella distinguenda | | | | | | | | | | | | | | | | | | | | |
| Cyclotella meneghiniana | | | | | | | | | | | | | | | | | | | | |
| Cyclotella ocellata | | | | | | | | | | | | | | | | | | | | |
| Discostella pseudostelligera | | | | | | | | | | | | | | | | | | | | |
| Discostella stelligera | | | | | | | | | | | | | | | | | | | | |
| Discostella volterekii | | | | | | | | | | | | | | | | | | | | |
| Puncticulata radiosa | | | | | | | | | | | | | | | | | | | | |
| Cyclostephanos delicatus | | | | | | | | | | | | | | | | | | | | |
| Cyclostephanos dubius | | | | | | | | | | | | | | | | | | | | |
| Cyclostephanos invisitatus | | | | | | | | | | | | | | | | | | | | |
| Stephanodiscus alpinus | | | | | | | | | | | | | | | | | | | | |
| Stephanodiscus hantzschii | | | | | | | | | | | | | | | | | | | | |
| Stephanodiscus minutulus | | | | | | | | | | | | | | | | | | | | |
cies new for Poland. Species within genera are arranged alphabetically.

RESULTS AND DISCUSSION

Thalassiosira duostra Pienaar Fig. 2: 1–3.

Valve 10.3–25.7 μm in diameter, areolar pattern fasciculate. Areolae 25–30 per 10 μm on valve face and 20–31 per 10 μm near its junction with the mantle. Areolae with external foramina and internal cribra. On valve face, cribra are circular in outline and slightly domed inwards. Tangential areolar walls present. Diameter of areolar chambers greater than the height of their walls. Marginal fultoportulae (strutted processes) situated in a single ring, 5–10 per 10 μm. Neighboring marginal fultoportulae are separated by 2–3 rows of areole, and have external tubes 0.5–1.2 μm in length and 0.3–0.5 μm in diameter.

GENERAL DISTRIBUTION. Rare, presumably cosmopolitan species, described from the Vaal River in the Republic of South Africa (Pienaar & Pieterse 1990). In Europe known from the Danube River and Iberian Peninsula (Kiss et al. 2005). Reported also from Brazil (Torgan et al. 2006).

DISTRIBUTION IN POLAND. *Thalassiosira duostra* occurred rarely in materials collected from an anthropogenically altered section of Kobylanka stream. New to the Polish flora.

ECOLOGY. Characterized as a freshwater, probably mesohalobous species present in eutrophic rivers (Pienaar & Pieterse 1990); reported also from polluted, eutrophic or even waste water (Torgan et al. 2006). The present data seem to confirm its wide ecological range.

REMARKS. Internal tubes of marginal fultoportulae located halfway between the valve center and valve margin. One rimoportula (labiate process) is located slightly outside the ring of marginal fultoportulae. The elongated inner slit of the rimoportula is oriented radially.

Thalassiosira guillardii Hasle
Figs 2: 4–5; 3 & 4: 1–3.

Valve 4–14 μm in diameter, areolar pattern fasciculate. Marginal fultoportulae in a single ring spaced regularly 7–8(12) per 10 μm.

GENERAL DISTRIBUTION. A rare, cosmopolitan species. Known from European and Asian waters: Germany, British rivers, Gulf of Finland (Hasle 1978), Danube River (Kiss 1984), Volga Basin (Genkal 1992), Lake Ladoga (Trifonova & Genkal 2006), Lake Baikal and Selenga River in Russia (Popovskaya et al. 2002), water bodies of the Iberian Peninsula (Kiss et al. 2005), and Tokyo Bay, Japan (Hasle 1978). Reported also from inland waters of the U.S.A. and Canada (Hasle 1978, Stoermer et al. 1999).

DISTRIBUTION IN POLAND. *Thalassiosira guillardii* was reported from Poland for the first time from the highly organically polluted and saline Zbiornik Puławski reservoir (Bucka & Wilk-Woźniak 2002; Wilk-Woźniak & Ligeza 2003). This is the second locality of *T. guillardii* in Poland (Fig. 3).

ECOLOGY. Characterized by fairly wide salinity tolerance (Hasle 1978), and observed in eutrophic, anthropogenically altered aquatic habitats.

REMARKS. The central fultoportula is located about halfway between the valve center and valve margin, surrounded by three satellite pores. Features a marginal ring of regularly spaced fultoportulae, each surrounded by four struts. One marginal fultoportula is replaced by a distinctive rimoportula with an elongated inner slit, oriented radially.

Fig. 2. 1–3 – *Thalassiosira duostra* Pienaar: 1 – marginal rimoportula and central fultoportulae arrowed, 2 – characteristic wall structure enlarged and arrowed, 3 – enlarged marginal part, 4 & 5 – *T. guillardii* Hasle (5 – detail of marginal area with marginal fultoportulae with four struts), 6–8 – *T. weissfl ogii* (Grunow) Fryxel & Hasle, specimens from saline waters in Stale, S Poland [7 – detail of central fultoportulae with four struts, and thallassiroid wall structure, 8 – marginal rimoportula (labiate process)], 1, 4–8 internal view, 2 & 3 – external view; all in SEM. CF – valve face fultoportula, MF – marginal fultoportula, R – rimoportula.
Thalassiosira pseudonana Hasle & Heimdal

Figs 4: 8 & 7: 20–25

Cyclotella nana Hustedt

Valves flat, very weakly silicified, 3.5–6.0 μm in diameter. Marginal fultoportulae in a single ring, spaced regularly, are the most distinctive structures under light microscopy.

GENERAL DISTRIBUTION. Probably a cosmopolitan species.

DISTRIBUTION IN POLAND. The distribution of T. pseudonana is not exactly known. It seems to be widespread and not rare, but overlooked or misidentified. Reported from the Zbiornik Puławski reservoir (Bucka & Wilk-Woźniak 2002; Wilk-Woźniak & Ligęza 2003), several rivers of southern Poland (data unpublished), and the Vistula River (Bucka 2000; Kawecka & Kwandrans 2000).

ECOLOGY. Planktonic (Krammer & Lange-Bertalot 1991), alkaliphilous, brackish/freshwater taxon, hypereutraphentic, α-mesosaprobous, strictly aquatic (Van Dam et al. 1994).

REMARKS. Morphological studies of C. nana Hustedt undertaken by Hasle and Heimdal (1970) resulted in the transfer this species to the genus Thalassiosira. It is believed to have an extremely wide tolerance spectrum (Hasle & Heimdal 1970) and a wide range of morphological variability (Hasle 1976; Kiss 1984). The observed valves are devoid of a central fultoportula, conforming to earlier observations of the species from other freshwater environments (Hasle 1976; Kiss 1984), and lack an irregular siliceous ring in the center of the valve face. In small, weakly silicified valves the most distinctive structures are marginal fultoportulae. According to Kiss (1984) the more silicified valves have discernible short costae in the marginal area. However, specimens with heavily silicified costae much more resemble the small valves without a stellate pattern of Discostella pseudostelligera (Hust.) Houk & Klee (Kiss 1984, Krammer & Lange-Bertalot 1991). Some specimens identified as similar to T. pseudonana (Fig. 7: 23–25) differ in possessing a distinct narrow striated valve face area.

Skeletonema potamos (Weber) Hasle in Hasle & Evensen

Fig. 4: 9

Cells rectangular in girdle view, in sibling pairs or joined into 3–5-cell colonies. *Skeletonema potamos* possesses sibling cells less closely spaced than those of *S. subsalsum*, because of their usually longer spines (Fig. 4: 9), domed valve faces, and distinct pseudosulcus.

GENERAL DISTRIBUTION. Cosmopolitan, relatively rare, reported from different kinds of inland water bodies (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. Species new to the Polish flora.

ECOLOGY. Nanoplanktonic, tolerating waters of elevated conductivity, also known from brackish waters, eutraphentic species (Krammer & Lange-Bertalot 1991). Alkaliphilous, fresh/brackish water taxon, hypereutraphentic, β-mesosaprobous, strictly aquatic (Van Dam et al. 1994).

REMARKS. Although this species was not reported from Poland earlier, its distribution is presumably much wider. The small dimensions and weakly silicified valves of *S. potamos* and *S. sub-

salsum make them easy to overlook or misidentify when they occur in low numbers.

Skeletonema subsalsum (Cleve-Euler) Bethge

Figs 4: 10–12 & 5

Melosira subsalsa Cleve-Euler

Tiny and weakly silicified cells, rectangular in girdle view, in closely spaced sibling pairs, due mainly to having flat valve faces and the lack of a pseudosulcus.

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. *Skeletonema subsalsum* was reported from three localities near shore waters of the Baltic Sea (Ringer 1966, Pliński 1979, Edler *et al.* 1984) and from the Vistula River in Kraków (Kawecka & Kwandrans 2000).

ECOLOGY. Cosmopolitan species, known from waters of moderate ion concentration (Krammer & Lange-Bertalot 1991). Brackish/freshwater taxon, strictly aquatic (Van Dam *et al.* 1994).

REMARKS. It can be distinguished from *S. potamos* by the lack of a pseudosulcus in sibling cells and flat valve faces. The presence of *S. subsalsum* in the heavily polluted Vistula River may be related to salinization of the environment.

Cyclotella atomus Hustedt

Figs 4: 13–15 & 6: 1–6

Valves 3.5—8 μm in diameter. Central area of valve face almost flat (Fig. 6: 1) or tangentially undulated (Fig. 6: 2), with one central fultoportula. Marginal area composed of 13.5—20 striae per 10 μm, with every second, third or fourth stria appearing thicker than the others (Fig. 4: 14).

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. A common species. So far reported only once from the area studied (Kawecka & Kwandrans 2000). *Cyclotella atomus* is one of the most common species in the material studied (Table 1).

ECOLOGY. Euplanktonic (Denys 1991), Brackish/freshwater taxon, eutraphentic, α-mesosaprobous, strictly aquatic (Van Dam *et al.* 1994), tolerates higher ion concentrations (Krammer & Lange-Bertalot 1991).

REMARKS. The observed specimens possessed a central fultoportula with three struts, and a diagonally positioned rimoportula (Fig. 6: 3 & 4). Another important morphological feature of the species is the position of marginal fultoportulacae struts (Sabater & Klee 1990; Håkansson & Clarke 1997). The observed specimens possessed marginal fultoportulacae, with two struts each, above and below internal openings (Fig. 6: 5 & 6). Specimens with a horizontally positioned rimoportula (Sabater & Klee 1990, Håkansson & Clarke 1997) were not found. Some of the observed specimens have a marginal area with a distinct border (closed chambers, Fig. 6: 2), a feature attributed to *C. atomus* var *gracilis*. Because these two taxa can be reliably distinguished only by EM analyses, and co-occur, we treated the two varieties together.

Cyclotella delicatula Hustedt

Figs 7: 14–19 & 8: 1–7

Valves 4.5—12.0 μm in diameter. Central area of valve face almost flat. According to Scheffler *et al.* (2003) most valves have striae of the same length except where the rimoportula is inserted.
Striae of almost equal length (Fig. 7: 14–15, internal view) to quite different lengths (Fig. 7: 17–19, external view), 16–18 per 10 μm. Marginal fultoportulae situated at every fifth costa, and one valve face fultoportula surrounded by two satellite pores (Fig. 8: 6–7).

GENERAL DISTRIBUTION. A rarely reported species described from a small groundwater lake in Austria. Known also from the Iberian Peninsula (Kiss et al. 2005), Russia (Genkal & Stenina 2005), Great Lakes in the U.S.A. and Canada (Fritz et al. 1993; Stoermer et al. 1999; Barbiero & Tuchman...
The lack of information for determination of *Cyclotella delicatula* in the most commonly used keys (Scheffler et al. 2003) could be the main reason for infrequent data on its distribution.

DISTRIBUTION IN POLAND. This is the first record from Poland.

ECOLOGY. Uncertain. *Cyclotella delicatula* has been recorded at only one locality – Pilica–Piaski spring. Its abundance in calcium-rich eutrophic waters may suggest the ecological requirements of this taxon.

REMARKS. The valves are weakly silicified with branched striae, and marginal fultoportulae spaced irregularly even in one valve (Fig. 8: 6). Neighboring marginal fultoportulae are separated by five, six or seven costae. The valves of specimens identified as *Cyclotella* cf. *delicatula* were without central area fultoportulae and possessed coarsely structured areolation (Fig. 8: 4). They were observed in the same material as *C. delicatula*.

Cyclotella distinguenda Hustedt

Figs 4: 16–17 & 11: 1–4

Frustulia operculata sensu Kützing 1834, non Agardh, *Cyclotella operculata* auct. non (C.A. Agardh) Brébisson, *C. tecta* Håkansson & Ross.

Valves 10–32 μm in diameter. Valve face with 12–14 striae per 10 μm. Central area tangentially undulate. No valve face fultoportula.

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. Reported mainly from northern Poland (e.g., Hustedt 1948; Marciniai 1973, 1979; Kaczmarska 1976, 1977; Bogaczewicz-Adamczak 1988; Bińka *et al.*1988; Cieśla & Marciniai 1982; Bąk *et al.* 2006) and central Poland (Rakowska 2001). Observed also in rivers of southern Poland (unpublished data). *C. operculata* Kützing was identified from the Wyżyna Krakowsko-Częstochowska upland by Raciborski (1888) and Gutwiński (1895).

ECOLOGY. Euplanktonic (Denys 1991), or tychoplanktonic of benthic origin, known from the pelagial zone of lakes, alkaliophilous species, tolerating waters of elevated conductivity, brackish/freshwater taxon, strictly aquatic (Krammer & Lange-Bertalot 1991; Van Dam *et al.* 1994).

REMARKS. Central area (both elevated and depressed part) covered by more or less distinctive wrinkles. Valves with striae, which consist of three rows of areolae along the whole length of striae (two rows of coarser areolae and one row of much finer areolae). Internal opening of rimoportula positioned diagonally on the valve face/mantle junction. Marginal fultoportulae openings situated (interiorly) just above every (second) third–fourth rib.

Cyclotella meneghiniana Kützing

Surirella melosiroides Meneghini

Valves 5–45 μm in diameter. Central area flat or tangentially undulate. Marginal area with 6–10 striae per 10 μm. In the central area, one to several valve face fultoportulae surrounded by three satellite pores. One rimoportula present with an external slit-like opening, and internally with a stalked labium often bent toward the costa (Fig. 10: 2 & 4).

GENERAL DISTRIBUTION. A widespread species (Krammer & Lange-Bertalot 1991; Håkansson 2002).

DISTRIBUTION IN POLAND. One of the most commonly reported centric diatoms. In the area studied it is known from the Vistula River (Turoboyski 1962; Pudo 1977; Kawecka & Kwantrans 2000), the Pilica River (Kadłubowska 1964), springs of Kobyłanka stream (Skalna 1969), and the Będkówka (Kubik 1970) and Sanka streams (Hojda 1971). One of the most common species in the materials studied (Table 1).

ECOLOGY. Tychoplanktonic of benthic origin (Denys 1991), brackish/freshwater, eutraphentic, α-meso- to polysaprobous, indicator of poor water quality, aquatic and subaerophytic (Van Dam *et al.* 1994; Prygiel & Coste 2000). According to Krammer and Lange-Bertalot (1991) it is common
in ditches and puddles and also in rivers and eutrophic lakes. *Cyclotella meneghiniana* possibly belongs to the group of species considered “super tramps”, such as *Nitzschia palea* (Kützing) W. Smith. Diatoms of this group can grow in a variety of habitats, but only when not in a highly competitive situation (Patrick & Roberts 1979). In highly eutrophic and polluted (saline) waters *C. meneghiniana* can develop large populations, when presumably freed of competition.
REMARKS. Cyclotella meneghiniana is a species with a very wide range of morphological variability (Håkansson 2002). Its morphology certainly is environmentally induced (e.g., presumably by ion concentration) and dependent on the life cycle stage (e.g., Håkansson & Chepurnov 1999; Håkansson 2002), as in other common centric diatoms such as Stephanodiscus alpinus Hust. (Theriot et al. 1987), S. minutulus (Kobayasi et al. 1985) or S. hantzschii Grunow (Geissler 1986). In the highly polluted and saline Vistula River we observed the mass occurrence of Cyclotella meneghiniana and recorded very fine silicified valves with various numbers of valve face fultoportulae (sometimes the valves of one frustule differed in number), and initial cells. The morphology of the observed initial cells (Figs 7: 13 & 10: 1–5) was similar to that of initial cells of C. meneghiniana found in monoclonal cultures by Håkansson and Chepurnow (1999). They also show close similarities to Meyer and Håkansson’s (1997) description of Cyclotella wulfiae.

Cyclotella ocellata Pantocsek Fig. 7: 26–27.

Valves 8–20(25) μm in diameter. Marginal area consists of 13–15 striae of different lengths per 10 μm. In central area are three to five papillae and corresponding depressions (*orbiculus depressus*).

GENERAL DISTRIBUTION. Probably a cosmopolitan species (Krammer & Lange-Bertalot 1991). DISTRIBUTION IN POLAND. This species is relatively frequently reported (e.g., Rakowska 1996; Siemińska & Wołowski 2003). Because of its great morphological variability, however, some information in references probably concerns similar related species. This is the first record of *C. ocellata* for the area studied.

REMARKS. The species is known to have great morphological plasticity, but is characterized by specific features (e.g., *orbiculus depressus*). Heterovalvum (epivalve is morphologically different from hypovalve) is a common feature in *C. ocellata* populations (Cremer *et al.* 2005). Under a different concept of morphological variability limits, C. *comensis* Grunow, C. krammeri Håkansson and C. *rossi* Håkansson are unified (Hegewald & Hindakova 1997; Cremer *et al.*, 2005), whereas Håkansson (2002) treated these taxa as separate species.

Discostella pseudostelligera (Hustedt) Houk & Klee Fig. 12: 1–3 & 13: 1–9

Cyclotella pseudostelligera Hustedt

Valves 4–6 μm in diameter. Marginal area (1/4–1/3 the area of the valve face) with 16–20 striae per 10 μm. Frustules heterovalvate. On valves with stellate pattern in the central area, dichotomically divided costae and more distinctive striae.

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991). DISTRIBUTION IN POLAND. The species is regarded as cosmopolitan but there are not enough published data to estimate its real distribution. Although there is only one record of the species from the Vistula River in Poland (Kiss & Paják 1994), probably it is not rare but either overlooked or not identified to the species level. Observed in the Wyżyna Krakowsko-Częstochowska upland: Vistula, Szreniawa, Dłubnia (Kawecka & Kwan-drans 2000) and Rudawa rivers (Bucka 2000), and in several rivers and reservoirs in southern Poland (unpublished data).

ECOLOGY. Defined as euplanktonic (Denys 1991) or tychoplanktonic of benthic origin, Brackish/freshwater taxon, eutraphentic, α-meso-

Fig. 8. Cyclotella delicatula Hustedt (1–3 & 5–7) and C. *cf.* *delicatula* (4). 1–5 – valves in external view, 6 & 7 – valves in internal view; all in SEM. (1 – frustule with very slight tangential undulation, girdle view, 7 – valve face fultoportulae with two struts). CF – valve face fultoportula, MF – marginal fultoportula, R – rimoportula.
saprobous, considered an indicator of moderate water quality (Prygiel & Coste 2000). Neutrophilous, α-mesosaprobous, eutraphentic, strictly aquatic species (Van Dam et al. 1995). Wunsam et al. (1995) characterized *D. pseudostelligera* as an inhabitant of waters of low conductivity (lower than for *D. stelligera*). Also reported from more eutrophic environments (Siver et al. 2005). These preference/tolerance limits conform with our findings in numerous rivers in southern Poland (Kwandrans & Wojtal 2006).

Remarks. Valves with a stellate pattern concentrically elevated, colliculate, with “teeth-shaped” external openings of marginal fultoportulae (Fig. 13: 1 & 4). Valves devoid of stellate pattern, with flat central part of the valve face (Fig. 13: 4). Internally with small, sessile rimoportulae and marginal fultoportulae openings surrounded by two struts situated on the valve face/mantle junction (Fig. 13: 5). The smallest, weakly silicified valves without stellate pattern are very difficult to identify by

![Fig. 9](image)

Fig. 9. *Cyclotella meneghiniana* Kützing. 1 & 7 – valve with tangential undulation of central area, 2, 3 & 5 – valves with different numbers of central fultoportulae, 2 – valve with two central fultoportulae, with three struts each, 8 – girdle view of valve. 1, 3–8 – valves in external view, 2 – valve in internal view; all in SEM. CF – valve face fultoportula, MF – marginal fultoportula, R – rimoportula.
LM, and could be confused with *Thalassiosira pseudonana*.

Discostella stelligera (Cleve & Grunow) Houk & Klee

Cyclotella meneghiniana var. *stelligera* Cleve & Grunow *in* Cleve, *Cyclotella stelligera* Cleve & Grunow *in* Cleve.

Frustules heterovalvate (central area with and without stellate pattern), 15–40 μm in diameter. Marginal area with 11–14 striae per 10 μm. Concentrically undulated marginal fultoportulae situated between costae. Valves with stellate pattern possess a narrow hyaline area between the ornamented marginal and central areas of the valve face.

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. According to data published up to 1990 (see Siemińska & Wołowski 2003), apparently quite common in Poland. From the Krakowsko-Częstochowska upland *D. stelligera* was reported from the area studied by Turoboyski (1962) and Pudo (1977) from the Vistula River, and by Kadłubowska (1964) from the Pilica River.

Remarks. Recorded specimens possessed distinctive coarse striation and central stellate pattern. In our materials *D. stelligera* was less common than *D. pseudostelligera*. Generally it occurred in eutrophic waters less polluted than the Vistula, Rudawa or Prądnik rivers, where *D. pseudostelligera* was not rare and sometimes common.

Cyclotella woltereckii Hustedt.

Valves of dichotomous pattern, 4.7–12 μm in diameter. Central area of different sizes from very small (Fig. 12: 16) to larger (Fig. 12: 15), formed by striae running towards the valve center. Marginal...
area with 19–21 longer striae per 10 μm running deep towards the valve center, and much shorter ones inserted among them (Fig. 15: 1–3).

GENERAL DISTRIBUTION. *D. woltereckii* was described by Hustedt from Java in 1942, also known from Europe (Wunsam *et al.* 1995, Hübener (1999).

DISTRIBUTION IN POLAND. The species was reported from Poland only twice (Fig. 14.), from reservoirs in central Poland (Bucka & Wilk-Woźniak 2002) and a dam reservoir in southern Poland (Wojtal *et al.* 2005).

ECOLOGY. Tychoplanktonic of benthic origin, cosmopolitan, brackish/freshwater taxon. Wunsam *et al.* (1995) gave lower conductivity preferences for this species, but the physical and chemical parameters of water where *D. woltereckii* was identified are much more like those reported by Hübener (1999); we found it in an alkaline eutrophic lake of moderate and high conductivity.

REMARKS. The observed specimens show irregular radial striation, with shorter striae inserted between longer ones. Central area almost absent or very small, raised (Fig. 12: 16) or rather flat (Figs. 12: 15 & 15: 1). External openings of marginal fultoportulae wing-shaped (Fig. 15: 2 & 3). Similar ornamentation of *D. woltereckii* was characterized as a dichotomous valve pattern by Klee and Houk (1996). Some specimens determined here as *D. cf. woltereckii* (Fig. 12: 4–9) show some similarities to *D. pseudostelligera*. Among these weakly silicified valves we did not find valves with the stellate pattern considered typical for *D. woltereckii*, consisting of larger puncta with several small puncta between them at the margin of the pattern (Klee & Houk 1996). The marginal area of these specimens is built of dichotomously branched striae. Because valves typical for *D. woltereckii* occurred in the same samples, possibly the valves determined as *D. cf. woltereckii* represent the stellate pattern morphological form of the species.

Puncticulata radiosa (Lemmermann) Håkansson Figs 12: 17–22 & 15: 4–7

Cyclotella comta var. *radiosa* Grunow in Van Heurck 1882.

Valves concentrically undulated, 7–25 μm in diameter. Externally, central area concentrically elevated, slightly colliculate, with external openings of central fultoportulae (smaller puncta) and areolae (bigger puncta) (Fig. 15: 4). External openings of rimoportulae at end of shortened striae (Fig. 15: 4). Inside valves with slit-like openings of rimoportulae positioned radially (Fig. 15: 5, 7) or diagonally, situated beneath alveolar chambers (towards central part of valve face). Marginal fultoportulae openings situated (interiorly) on valve mantle, above every third to fourth rib (Fig. 15: 5).
GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. The distribution of *P. radiosa* seems to be underestimated. Reported from the area studied from the Vistula River (Kawecka & Kwandrans 2000) and the Rudawa River (Kawecka & Kwandrans 2000).

ECOLOGY. Euplanktonic (Denys 1991), alkaliphilous, brackish/freshwater species, eutaphentic, β-mesosaprobous, strictly aquatic species (Van Dam *et al.* 1994).

REMARKS. Particular morphotypes may develop in response to certain trophic states or life stages of the cell, within a large range of morphological variability.

Stephanodiscus delicatus Genkal, *Cyclostephanos tholiformis* Stoermer, Håkansson & Theriot

Center of valve face elevated or depressed, 6.9–13.8 μm in diameter. Valves with slightly excentric valve face fultoportulae. The striated marginal area consists of 11.5–17 striae per 10 μm. According to Casper and Scheffler (1990) and Dreßler and Hübener (2006), marginal fultoportulae possess two or three struts (cowlings) and one central face fultoportula with two struts.

REMARKS. The species is characterized by great morphological variability, related to the degree of valve silicification. The fine or coarse structure of valves, the presence or absence of spines, and the areolation pattern may be environmentally and ontogenically dependent.

* Cyclostephanos dubius (Fricke) Round in Theriot *et al.* 1987 Figs 15: 8 & 16: 1–11

Cylotella dubia Fricke, *Stephanodiscus dubius* (Fricke) Hustedt.

Center of valve face strongly concentrically undulate, 4–35 μm in diameter. Valves with variable numbers of spines at the valve face/mantle junction. Striated marginal area consists of 12–18 striae per 10 μm.

GENERAL DISTRIBUTION. Probably a cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. Commonly reported species.

REMARKS. The species can inhabit eutrophic and polluted calcium-rich waters (e.g., Casper & Scheffler 1990, Dreßler & Hübener 2006), including waters with elevated salts concentrations (Kharitonov 2005).

Fig. 15. 1–3 – Discostella woltereckii (Hustedt) Houk & Klee. 2 & 3 – marginal wing-shaped fultoportulae, 4–7 – *Puncticulata radiosa* (Lemmermann) Håkansson (5–7 – marginal fultoportulae at every fourth costa, scattered central fultoportulae with three struts), 8 – Cyclostephanos dubius (Fricke) Round, 9 – *C. invisitatus* (Hohn & Hellerman) Stoermer, Theriot & Håkansson. 1–4, 8 & 9 – external view, 5–7 – internal view; all in SEM. CF – valve face fultoportula, MF – marginal fultoportula, R – rimoportula.
Cyclostephanos invisitatus (Hohn & Hellerman) Stoermer, Theriot & Håkansson

Figs 15: 9; 16: 12–14 & 17

Stephanodiscus invisitatus Hohn & Hellerman, *Stephanodiscus hantzschii* var. *striator* Kalbe

Valves flat, 6–14 μm in diameter. Striated marginal area consists of 15–20 striae per 10 μm.

GENERAL DISTRIBUTION. Probably a cosmopolitan species (Krammer & Lange-Bertalot 1991).
Cyclostephanos invisitatus (Hohn & Hellerman) Stoermer, Theriot & Håkansson in Poland (one dot may represent more than one locality).

DISTRIBUTION IN POLAND. *C. invisitatus* was reported from the Rawka River (Rakowska 1984), the heavily polluted Zbiornik Puławski reservoir (Bucka & Wilk-Woźniak 2002), a dam reservoir in southern Poland (Wojtal et al. 2005), and the Zalew Szczeciński lagoon (Bąk et al. 2006). Presumably much more widespread.

ECOLOGY. Not well known. Cosmopolitan, planktonic (Krammer & Lange-Bertalot 1991), known from waters of moderate and higher trophy and moderate alkalinity (e.g., Siver et al. 2005).

REMARKS. The representatives in the material studied were weakly silicified, with fine ribs, most distinctive near the valve margin.

Stephanodiscus alpinus Hustedt

Figs 16: 23–24 & 19: 20–24

Valves 7.5–32 μm in diameter, with central part strongly undulate concentrically. Striated area consists of (6)8–11 striae per 10 μm. Valve face fultoportula near center or absent (Håkansson 2002).

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. Known from the Zbiornik Puławski reservoir (Bucka & Wilk-Woźniak 2002, Wilk-Woźniak & Ligeza 2003) and Zalew Szczeciński lagoon (Bąk et al. 2006). From the Wyżyna Krakowsko-Częstochowska upland reported so far only from Kluczwoda stream (Nawrat 1993).

ECOLOGY. Planktonic, cosmopolitan (Krammer & Lange-Bertalot 1991). *Stephanodiscus alpinus* was originally believed to prefer low temperatures. Further data indicated that it tolerates slight nutrient enrichment (Stoermer & Yang 1970). The data from Poland may suggest a much wider range of ecological tolerance, including heated, polluted and saline waters (Bucka & Wilk-Woźniak 2002), polluted brackish waters (Bąk et al. 2006) and subaerophytic localities overgrown by Vaucheria sp. in the Kluczwoda stream (Nawrat 1993). Misidentification is also possible. Records of its occurrence in a wide environmental spectrum may imply broad tolerance limits or may be the result of incorrect reporting of separate but similar taxa.

REMARKS. Some specimens (Fig. 19: 22–24) resemble *Stephanodiscus medius* Håkansson, a species known from Canada. During our study they occurred only once, in the same sample with *Stephanodiscus alpinus*.

Stephanodiscus hantzschii Grunow

Figs 18: 3–8 & 19: 1–9

Cyclotella operculata sensu Hantzsch in Rabenhorst, non *Frustulia operculata* Agardh, non *Cyclotella operculata* Kützing, *Stephanodiscus tenuis* Hustedt, *S. hantzschii* Grunow fo. *tenuis* (Hustedt) Håkansson & Stoermer.

Valves flat, 5–30 μm in diameter. Striated area consists of 8–12 striae per 10 μm. Spines at every interfascicle (at valve face/mantle junction). Mantle fultoportulae beneath every third to fifth spine. One rimoportula between spines (Fig. 18: 5–6). Valve face fultoportula absent. Observed specimens possessed valves with a clear areolar pattern (Fig. 18: 3, 6) as well as irregularly shaped and variously oriented short fissures and slits scattered across the valve face (Fig. 18: 4).

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).
ECOLOGY. Euplanktonic (Denys 1991), alcalibiontic, brackish/freshwater species, eutraphentic, α-mesosaprobous to polysaprobic, strictly

Fig. 18. 1 & 2 – *Stephanodiscus minutulus* (Kützing) Grunow, central fultoportula with two struts, 3–8 – *S. hantzschii* Grunow (3–6 – valves at different stages of wall silicification, 8 – central area without fultoportula), 1, 2, 7 & 8 – internal view, 3–6 – external view; all in SEM. CF – valve face fultoportula, MF – marginal fultoportula, R – rimoportula.

Distribution in Poland. One of the most commonly reported centric diatom species. From the area studied it was reported from the Pilica River (Kadłubowska 1964), Wyżyna Krakowsko-Częstochowska upland streams (Kłonowska 1986) and the Vistula River (Kawecka & Kwandrans 2000). One of the most common species in the materials studied (Table 1).

Fig. 18.

aquatic species (Van Dam et al. 1994). In our samples it was present in material collected from eutrophic waters.

Remarks. *Stephanodiscus tenuis* was described by Hustedt (1939) as a separate species, then was included in *S. hantzschii* as a form (Håkansson & Stoermer 1984). The annulus (central rosette) was regarded as a diagnostic feature of this taxon, but this structure is also present in other *Stephanodiscus* species, and may be more related to the life cycle stage (Håkansson 2002). Our observations
conform with the available literature reports. The species is characterized by great morphological variability dependent on environmental conditions and the life cycle stage (e.g., Häkansson 2002).

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. Commonly reported species.

ECOLOGY. Alkalibiontic, brackish/freshwater, hypereutraphentic species (Van Dam et al. 1994). In the materials studied it occurred in meso- and eutrophic waters.

Stephanodiscus minutulus (Kützing) Grunow in Cleve & Möller

Valves 5–11 μm in diameter. Striated area consists of 13–15 striae per 10 μm. Valves with various degrees of undulation were observed (e.g. Fig. 20).

GENERAL DISTRIBUTION. A cosmopolitan species (Krammer & Lange-Bertalot 1991).

DISTRIBUTION IN POLAND. Commonly reported from Poland. In the area studied, known from the Vistula River (Kawecka & Kwandrans 2000).

ECOLOGY. Tychoplanktonic of epontic origin (Denys 1991), known from waters with elevated ion concentrations (Krammer & Lange-Bertalot 1991).

REMARKS. The positions of the valve face fulltoportulae were regarded as features differentiating *S. minutulus* (heterotopic position) from *S. parvus* (slightly excentric position) (Håkansson 2002), but both positions were observed in type material of *S. minutulus* (Klee & Casper 1997). Different morphotypes with various degrees of undulation of the valve face and various areolation patterns probably develop in response to environmental conditions and population growth rates (Kobayasi et al. 1985, (Håkansson 2002). Occluded, flap-like, slit-like or typical areoles are organized in regular patterns or scattered on the valve face. This great variability led Siemińska and Chudybowa to describe the new species *S. rugosus* in 1979, from one lake of the Masurian Lakeland. Detailed investigations of the stability of features considered diagnostic of *S. rugosus* revealed them to be of no taxonomic value, and that taxon was synonymized with *S. minutulus* (Genkal & Häkansson 1990).

ACKNOWLEDGMENTS. We are grateful to Dr. Mirko Dressler, Dr. Vaclav Houk, Dr. Thomas Hübener and Rolf Klee for discussions and suggestions, to Professor Pertii Eloranta for critically reading the manuscript, to Professors Jadwiga Siemińska, Andrzej Witkowski and Konrad Wołowski for providing access to their personal libraries, to Anna Łatkiewicz for producing the SEM images, and to our colleagues and friends for their help in gathering needed literature. This work was supported in part by the Polish Ministry of Education and Science, grant P04G 09826.

REFERENCES

BUCKA H. 2000. Diversity of flora and fauna in running waters of the Province of Cracow (southern Poland) in relation to water quality. 6. Characteristics of rivers on the basis

KÚBÍK B. 1970. The occurrence of Bacillariophyceae in three springs of Będkówka stream (Cracow-Częstochowa Ju-

WOŁOWSKI K. 1998. Taxonomic and environmental studies on Euglenophytes of the Kraków-Częstochowa Upland (Southern Poland). W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Received 3 March 2006