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Abstract
Aim: The increasing availability of animal tracking datasets collected across many 
sites provides new opportunities to move beyond local assessments to enable de-
tailed and consistent habitat mapping at biogeographical scales. However, integrating 
wildlife datasets across large areas and study sites is challenging, as species' varying 
responses to different environmental contexts must be reconciled. Here, we compare 
approaches for large-area habitat mapping and assess available habitat for a recolo-
nizing large carnivore, the Eurasian lynx (Lynx lynx).
Location: Europe.
Methods: We use a continental-scale animal tracking database (450 individuals from 
14 study sites) to systematically assess modelling approaches, comparing (1) global 
strategies that pool all data for training versus building local, site-specific models and 
combining them, (2) different approaches for incorporating regional variation in habi-
tat selection and (3) different modelling algorithms, testing nonlinear mixed effects 
models as well as machine-learning algorithms.
Results: Testing models on training sites and simulating model transfers, global and 
local modelling strategies achieved overall similar predictive performance. Model 
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1  |  INTRODUC TION

Habitat suitability maps are important for informing ecological 
and biogeographical research, wildlife management and conser-
vation planning (Guisan et al., 2013). Today, an increasing wealth 
of wildlife and environmental data provide new opportunities for 
assessing habitat suitability at higher detail and across larger ex-
tents than ever before (He et al., 2015; Oeser et al., 2020). Animal 
tracking technology provides a growing and powerful data source 
in this context (Kays et al., 2015). As tracking datasets collected 
across an increasing number of individuals and study sites are in-
tegrated and harmonized, they become robust sources of infor-
mation for characterizing habitat suitability across large areas 
(Fraser et al., 2018). Yet, combining heterogeneous wildlife data-
sets sampled across study sites and large environmental gradients 
is far from trivial. As wildlife datasets are often geographically 
restricted and unrepresentative of species' current or potential 
ranges, large-area habitat assessments typically require extensive 
model transfers (i.e. predicting models to geographical areas or 
environments not covered by training data), posing a major chal-
lenge for habitat models (Sequeira et al., 2018; Yates et al., 2018). 
Moreover, differences in population density, species interac-
tions or local adaptations to varying environmental conditions 
might cause habitat selection to differ across study sites (Aarts 
et al., 2013; Avgar et al., 2020), meaning that regionally varying 
responses should be considered when combining wildlife datasets 
for large-area habitat mapping.

Regional variation in habitat selection (i.e. the variation of a 
species' response to an environmental factor across space) forces 
a trade-off between specificity and generality when developing 
habitat models. Local, site-specific models typically capture local re-
sponses well, but often show limited transferability to other regions 
or environmental contexts. Conversely, global models that pool 

datasets from several sites provide more general characterizations 
of habitat selection but may fail to capture relevant local variation 
(Bamford et al., 2009; Paton & Matthiopoulos, 2016). Which strategy 
is optimal might thus depend on the modelling goal. Both global and 
local model training strategies have been used for assessing wildlife 
habitat across large areas (DeCesare et al., 2012; Muhly et al., 2019; 
Scharf & Fernández, 2018), but have rarely been compared (Olson 
et al., 2021; Reisinger et al., 2021). How to best integrate wildlife 
datasets covering several study sites and large environmental gra-
dients for large-area habitat mapping therefore remains a largely 
unresolved question.

Regionally varying habitat selection is commonly ignored in 
habitat assessments (Paton & Matthiopoulos, 2016), yet some po-
tential solutions have been proposed. For example, in global mod-
els that pool data from different sites, regionally varying responses 
can be included via interaction effects, treating variation in habitat 
selection either as a function of space (Hothorn et al., 2011) or of 
regional-scale environmental conditions (i.e. habitat availability; 
Matthiopoulos et al., 2011; Paton & Matthiopoulos, 2016). Such in-
teraction models can either be fit by specifying interactions in gen-
eralized linear or additive models (Aarts et al., 2013; Matthiopoulos 
et al., 2011), or via more flexible machine-learning algorithms that 
learn interactions from data (Aldossari et al., 2022). Similarly, dif-
ferent approaches for combining local, site-specific models may be 
used to describe regionally varying habitat selection, such as model 
weighting based on geographical distance or environmental dissim-
ilarity between training and prediction sites (DeCesare et al., 2012). 
While some of these modelling strategies for large-area habitat as-
sessments have been tested or studied in isolation, systematic as-
sessments of modelling approaches for large-area habitat mapping, 
across training strategies, approaches for incorporating varying 
habitat selection, and modelling algorithms are lacking (Reisinger 
et al., 2021).

performance was the highest using flexible machine-learning algorithms and when 
incorporating variation in habitat selection as a function of environmental variation. 
Our best-performing model used a weighted combination of local, site-specific habi-
tat models. Our habitat maps identified large areas of suitable, but currently unoccu-
pied lynx habitat, with many of the most suitable unoccupied areas located in regions 
that could foster connectivity between currently isolated populations.
Main Conclusions: We demonstrate that global and local modelling strategies can 
achieve robust habitat models at the continental scale and that considering regional 
variation in habitat selection improves broad-scale habitat mapping. More generally, 
we highlight the promise of large wildlife tracking databases for large-area habitat 
mapping. Our maps provide the first high-resolution, yet continental assessment of 
lynx habitat across Europe, providing a consistent basis for conservation planning for 
restoring the species within its former range.

K E Y W O R D S
animal tracking, Eurasian lynx, habitat suitability, large carnivore, large-area mapping, Lynx lynx
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    |  3OESER et al.

One group of species that could particularly benefit from im-
proved large-area habitat predictions are large carnivores. Large 
carnivores have long been focal species for conservation, due to 
their charisma, their declining populations in many parts of the 
world (Ceballos et al., 2005), their role as umbrella species (Sergio 
et al., 2006) and their key roles in ecosystems (Ripple et al., 2014). 
At the same time, large carnivore conservation is often particu-
larly challenging. Large carnivores often come into conflict with 
humans due to their large home ranges and food requirements 
(Treves & Karanth, 2003), and commonly remain only in small and 
fragmented populations due to historical persecution and/or habi-
tat loss (Cardillo et al., 2005). Together, this translates into a need 
for coordinated metapopulation conservation and management, 
often across national borders and jurisdictions (Bonn Lynx Expert 
Group, 2021; Trouwborst, 2015). Such efforts, in turn, require 
habitat information that is consistent across large areas but still 
provides sufficient detail to inform decision-making at local scales 
(Guisan et al., 2013).

The Eurasian lynx (Lynx lynx; hereafter: lynx) provides an interest-
ing case for comparing large-area habitat mapping approaches. After 
being extirpated from much of their former distribution in Europe, 
lynx have recently expanded their range through reintroductions as 
well as recolonizations of nearby habitat patches (Linnell et al., 2009; 
Molinari-Jobin et al., 2010). This resulted in highly fragmented popu-
lations across Europe, with limited success of natural recolonization 
through dispersal, making them susceptible to loss of genetic diver-
sity and jeopardizing their long-term survival (Mueller et al., 2022; 
Schmidt et al., 2011). Better data on lynx habitat suitability across 
Europe are therefore key to plan and manage towards viable lynx 
metapopulations (Bonn Lynx Expert Group, 2021; Hemmingmoore 
et al., 2020), particularly in terms of identifying unoccupied but 
suitable habitat. Yet, while some local assessments for lynx habitat 
in Europe have been made (Cristescu et al., 2019; Hemmingmoore 
et al., 2020), consistent, up-to-date and detailed habitat information 
at broader extents is lacking.

We here compare approaches for large-area habitat mapping 
using a large collection of tracking data from lynx in Europe. Our 
dataset encompasses 450 individual lynx tracked at 14 sites, rep-
resenting 8 of 11 extant European lynx populations (Kaczensky 
et al., 2021). More specifically, we compared global and local model 
building strategies, three modelling algorithms including mixed ef-
fects models and two machine-learning algorithms, and different 
approaches for incorporating regional variation in habitat selection, 
allowing for varying selection either as a function of space or of en-
vironmental variation. Our analyses addressed the following overar-
ching research questions:

1. How do global and local habitat model building strategies, 
different modelling algorithms and different approaches for in-
corporating varying habitat selection influence the predictive 
performance of broad-scale habitat models?

2. How similar are habitat maps derived from global versus Local 
modelling approaches?

3. What are patterns of lynx habitat suitability across Europe and 
where are the most suitable but currently unoccupied habitat 
areas?

2  |  METHODS

2.1  |  Study area and tracking data

We used GPS and VHF tracking datasets collected at 14 sites 
across Europe (Figure 1). Our dataset was collected through the 
research network EUROLYNX, which provides a collaborative, 
bottom-up platform for bringing together datasets and expertise 
of lynx researchers across Europe (Heurich et al., 2021). Prior to all 
analyses, tracking datasets were harmonized through a standardized 
procedure of quality checks (Urbano et al., 2021); see Appendix S1 
in Supporting Information for an overview of all datasets). We 
filtered the tracking datasets by manually removing dispersing 
individuals, which often differ strongly in their habitat selection 
compared to resident animals (Hemmingmoore et al., 2020). To 
reduce spatial autocorrelation, we down-sampled our tracking data 
to a maximum sampling frequency of 6 h. To ensure robust estimates 
of individual-level home ranges for sampling habitat availability, we 
removed individuals with fewer than 50 available locations. While 
VHF data (225/442 remaining individuals) offered lower positional 
accuracy compared to GPS data (location errors up to ca. 500 m; 
Nagl et al., 2022; White et al., 2015), we included them to improve 
the representativity of our datasets for characterizing site- and 
continental-scale habitat selection by lynx.

2.2  |  Habitat suitability modelling

We collected 13 predictor variables for modelling lynx habitat 
suitability, which we selected based on previous studies on 
lynx habitat selection (Basille et al., 2009; Filla et al., 2017; 
Hemmingmoore et al., 2020). Variables included information 
on land-cover, topography, human pressure, as well as satellite-
based metrics characterizing fine-scale habitat variability (Oeser 
et al., 2020); see Appendix S2 for a full overview of variables and 
details on their selection, data sources and processing).

We compared three modelling algorithms: Maxent (Phillips 
et al., 2006), random forests (Breiman, 2001) and generalized ad-
ditive mixed effects models (GAMMs). Maxent and random forests 
are flexible machine-learning algorithms that are considered among 
the best-performing presence-only species distribution modelling 
algorithms (Valavi, Guillera-Arroita, et al., 2021). Moreover, these 
algorithms are well suited for detecting and describing interactions 
among predictor variables, which could be useful for character-
izing regional variation in habitat selection (Aldossari et al., 2022). 
Following recommendations for modelling presence-only data with 
random forests, we used down-sampled random forests, in which 
sample sizes of presence and background records are balanced in 
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4  |    OESER et al.

each classification tree (Valavi, Elith, et al., 2021). As our third algo-
rithm, we used nonlinear mixed effects models that allow to account 
for the sampling structure of our tracking dataset (repeated sam-
pling at the level of study sites and individuals (Muff et al., 2020). 
Specifically, we fitted GAMMs, including random intercepts and (lin-
ear) random slopes for either lynx individuals (site-specific local mod-
els) or study sites (global models pooling tracking data across sites). 
We tuned parameter settings for Maxent and random forest models 
based on cross-validation (see Appendix S3 for details on model tun-
ing results). We used the R-packages ‘dismo’ (Hijmans et al., 2020), 

‘randomForest’ (Liaw & Wiener, 2002) and ‘mgcv’ (Wood, 2022) to 
fit Maxent, random forest and GAMM models respectively.

We analysed habitat selection of lynx at two hierarchical levels: 
selection of home ranges within the landscape (hereafter landscape 
level, also referred to as second-order selection (Johnson, 1980; 
Mayor et al., 2009); and within-home range selection (hereafter home 
range level, also referred to as third-order selection). We used a nested 
use/availability sample for training habitat models, which allows com-
bining the outputs of models fitted at different levels of selection into 
a single, level-integrated prediction of habitat suitability (DeCesare 

F I G U R E  1  Overview of the study area and extent of the lynx tracking data used in this study. Coloured polygons show areas covered by 
lynx home ranges. Abbreviations of the study site names: BA—Baltic, BF—Bohemian Forest, BI—Białowieża Forest, DM—Dinaric Mountains, 
EA—Eastern Alps, HM—Harz Mountains, JU—Jura Mountains, NN—Norway North, NS—Norway South, SN—Scandinavia North-Central, 
SS—Scandinavia South-Central, SW—Sweden South, WA—Western Alps, WC—Western Carpathians. Light grey areas indicate the current 
distribution of Eurasian lynx according to IUCN data (Breitenmoser et al., 2015; Kaczensky et al., 2021).
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    |  5OESER et al.

et al., 2012). We derived home ranges for each lynx individual by cal-
culating 95% minimum convex polygons (MCPs). We chose 95% MCPs 
since our goal was to define approximate home ranges at the landscape 
level while creating a comprehensive sample of available habitats at 
the home range level (Fattebert et al., 2018; Holbrook et al., 2017). 
To match the scale of the predictor variables (i.e. the neighbourhood 
of values considered) with the scale of the habitat selection process 
(McGarigal et al., 2016; Remm et al., 2017), for landscape-level mod-
els we used predictor variables derived through moving window av-
erages at the scale of lynx home ranges (22 km diameter = 380 km2 
area ≈ average of site-wise median home range = 392 km2). For home 
range-level models, we used variables at a fine scale of 100 m, the 
target resolution of our habitat suitability maps.

At the landscape level, we characterized habitat use by sam-
pling as many random points within the home ranges of each indi-
vidual lynx as available tracking locations. As available locations, we 
sampled random points in a buffer area of 80 km around the home 
ranges, representing likely dispersal distances of lynx (Samelius 
et al., 2012; Zimmermann et al., 2005). At the home range level, 
we used the recorded tracking observations as used locations and 
sampled available locations randomly inside home ranges of lynx 
individuals. Based on initial tests on the convergence of model coef-
ficients with increasing background sampling sizes, we used a sam-
pling ratio of 1:12 of used: available locations (Northrup et al., 2013; 
see Appendix S4). Finally, to balance the numbers of observations 

between individuals, we limited the maximum number of used loca-
tions included per individual lynx to 200 through random sampling, 
keeping 12 times as many available locations as used locations. 
Since tests on the performance of model predictions at the individ-
ual level indicated little improvements beyond 200 locations (see 
Appendix S5), we assumed that this down-sampling did not repre-
sent a consequential loss of information. Our final datasets used for 
building habitat models contained 740,018 locations from 442 lynx 
individuals, with an average tracking period of 735 days per individ-
ual (range 248–1617 across sites).

2.3  |  Comparison of modelling approaches

We compared a total of six modelling approaches: two strategies 
for model training (global vs. local) and, within each of them, two 
approaches for incorporating regionally varying habitat selection 
plus one stationary approach (Figure 2). First, we established base-
line models assuming no regional variation in habitat selection by 
using a simple global model (global stationary) and a simple average 
of local model predictions (local stationary). We contrasted these 
with approaches explicitly allowing for regionally varying responses. 
In global models, we let responses vary as a function of space 
(global spatial) or environmental conditions (global environment). For 
combining local model predictions, we used weights based on the 

F I G U R E  2  Schematic overview of the different modelling approaches tested. In the global modelling strategy, a single model is fitted 
using all data. In the local modelling strategy, site-specific models are built and then combined into an ensemble prediction. In each strategy, 
we tested two different ways to incorporate regional variation and contrasted these with a stationary model (for more explanation see 
Table 1).
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6  |    OESER et al.

distance to training sites (i.e. inverse distance weighting, local spatial) 
or based on the environmental dissimilarity to training sites (local 
environment). An overview of all modelling approaches is given in 
Figure 2 and Table 1.

For the global spatial approach, we implemented spatially vary-
ing responses for Maxent and random forest models by including 
spatial X and Y coordinates as model predictors, thereby allowing 
the algorithms to fit interactions with spatial coordinates (Osborne 
et al., 2007). In GAMMs, we added spatially varying smooth effects 
for each predictor variable to our models (Hothorn et al., 2011). For 
the global environment approach, we added predictor variables derived 
at broader spatial scales as predictors, explicitly specifying (linear) in-
teraction effects between variables of different scales in GAMMs fol-
lowing Matthiopoulos et al. (2011). Allowing for interactions between 
fine- and broad-scale variables allows capturing functional responses 
in habitat selection (i.e. variation of habitat selection with habitat 
availability; Paton & Matthiopoulos, 2016). In addition to the regular 
scales of predictor variables (22 km and 100 m at the landscape- and 
home range level respectively), we added variables at scales reflect-
ing the dispersal buffer distance (80 km scale) and home range sizes 
(22 km scale) at the landscape and home range level, respectively, ap-
plying circular moving averages to derive rescaled variables.

In the local spatial approach, we implemented regional variation 
of selection by weighting the predictions of local models based on 
spatial distance on the distance of training sites to the prediction 
site (i.e. inverse distance weighting; DeCesare et al., 2012). We 
defined the extent of study sites as the intersection of all lynx 
home ranges from that site. In the local environment approach, we 
weighted local models based on the environmental dissimilarity 
of the training data to the prediction site. To ensure the compara-
bility of variables, we mean centred and standardized predictors 
across our entire study area before calculating dissimilarity mea-
sures. Then, we calculated environmental dissimilarity using three 
distance measures: the Euclidean distance (in predictor variable 
space) to the nearest neighbour in the training dataset (Meyer & 
Pebesma, 2021), the median Euclidean distance to the training 
dataset, and finally, the Mahalanobis distance to the centre of the 
predictor distribution at training points (Mesgaran et al., 2014). 
To reflect different contributions of predictor variables in habi-
tat models, we also calculated weighted versions of the three 
distance measures, in which variables were weighted by their rel-
ative variable importance before distance calculation (Meyer & 
Pebesma, 2021). We calculated relative importance scores based 
on permutation importance in Maxent and random forest models 
(Smith & Santos, 2020) and used χ2 values of smooth terms for 
GAMMs as a proxy for variable importance. Based on cross-val-
idation, we selected the weighting scheme that optimized model 
transferability (i.e. performance at external evaluation). Weighting 
models improved the transferability using only one (median 
Euclidean distance between datasets) of the three measures of 
environmental dissimilarity in comparison to a simple averaging 
of local habitat models (local stationary approach), which we there-
fore used in the local environment approach (see Appendix S6).

2.4  |  Comparison of habitat model outputs

We compared the six habitat modelling approaches (Figure 2; 
Table 1) in terms of their predictive performance. We assessed the 
performance of all models using two types of cross-validation: (1) 
testing our models' ability to predict lynx occurrence at sites used 
for model training (internal evaluation), as well as (2) transferring 
models to sites not used for model training (external evaluation). For 
external evaluation, we left out one study site at a time, resulting in 14 
cross-validation folds. For internal evaluation, we created five cross-
validation folds based on lynx individuals (Roberts et al., 2017), using 
random samples of 70% of lynx individuals at all sites to train models, 
and testing models on the held-out 30% of individuals, one site at 
a time. As a measure of predictive performance, we combined two 
complementary performance metrics, the area under the receiver-
operating-curve (AUC) and the continuous Boyce index (CBI; Hirzel 
et al., 2006), indicating model discrimination and calibration (Phillips 
& Elith, 2010) respectively. We combined both metrics into a relative 
performance score by normalizing AUC and CBI values on a ∈ [0, 1] 
scale and calculating their mean (hereafter: model performance).

We created habitat suitability maps for all six modelling ap-
proaches, computing an ensemble prediction by averaging across 
algorithms in each approach. We predicted landscape-level and 
home range-level habitat maps using the most recent layers of en-
vironmental predictors and multiplied ensemble predictions from 
landscape and home range-level models to obtain level-integrated 
habitat suitability maps (DeCesare et al., 2012). Then, we compared 
maps of the best-performing global and local approaches with one 
another. To assess the similarity of predicted suitability patterns, we 
calculated the Spearman rank-correlation coefficient between hab-
itat maps. Furthermore, we derived habitat patches by thresholding 
maps, using the 90%, 95% and 97.5% suitability values at lynx lo-
cations used for training habitat models as low, medium and high 
thresholds respectively. Although binary habitat maps are some-
times required for research or conservation planning applications, 
selecting thresholds in presence-only habitat modelling introduces 
an arbitrary decision into the mapping process. We compared dif-
ferent thresholds to evaluate the impact of threshold selection on 
mapped habitat areas, choosing thresholds based on percentile suit-
ability values at tracking locations given their clear underlying as-
sumptions. For example, a 90% threshold assumes that 10 % of lynx 
tracking locations are recorded outside areas classified as suitable. 
After applying thresholds, we compared patch maps by calculating 
the per cent overlap of habitat patches across threshold values.

We identified suitable but unoccupied areas based on the most 
recent, continental-level survey of lynx distribution carried out for the 
reference period 2012–2016 (Kaczensky et al., 2021). Using the same 
grid as the survey (EEA reference grid used for Flora-Fauna-Habitat 
reporting by the European Union), we calculated the suitability per 
10 km2 grid cell in all countries fully covered by the distribution survey 
(all European countries but Russia, Ukraine, Belarus and Moldova). 
For calculation, we used an unweighted ensemble (i.e. mean value) 
of the best-performing global and local approaches, summing total 
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    |  7OESER et al.

suitability scores within each grid cell. We then compared suitability 
for unoccupied grid cells with areas of extant lynx populations (Boyce 
& McDonald, 1999; Hebblewhite et al., 2012). Therefore, we divided 
summed suitability values per unoccupied grid cell through the me-
dian of sums within grid cells featuring permanent lynx occurrence. 
Finally, we identified the most suitable unoccupied areas as the un-
occupied grid cells with the highest 5% of summed suitability values, 
excluding all islands except the United Kingdom.

3  |  RESULTS

3.1  |  Performance of habitat modelling approaches

Overall, performance of global and local approaches was similar 
(mean AUC/CBI values across all models 0.69/0.695 and 0.70/0.66 
respectively; Figure 3). Comparing modelling algorithms, the per-
formance of GAMMs was lower than of the machine-learning algo-
rithms (Maxent and random forest), which was consistent across 
levels of selection (landscape and home range level), and evalua-
tion types (external and internal evaluations; average difference 
in combined performance score of GAMM models compared to 
machine-learning models: −0.146). Differences were particularly 
large at the landscape level (mean difference: −0.226). In addi-
tion, model tuning (i.e. optimization of algorithm parameters) had 
a large impact on the performance of Maxent and random forest 
models, yielding particularly large performance improvements in 
global models (see Appendix S3). Since we integrated predictions 
at both scales for creating habitat suitability maps, in the follow-
ing, we mainly focus on combined performance scores across 
scales. For an overview of absolute performance scores (AUC and 
CBI values) at individual levels of selection, see Appendix S7.

Across all six tested modelling approaches, performance was 
higher at internal evaluation (predicting to known sites used during 
model training) than at external evaluation (transferring models to 
sites not used during training). Yet, performance differences between 
internal and external evaluation were moderate (average across 
approaches: −0.039), indicating overall good transferability of the 

modelling approaches. On average, local modelling approaches (i.e. 
combining separately built, site-specific habitat models) performed 
slightly better during internal evaluation, while global modelling ap-
proaches (i.e. pooling all study sites for model training) showed higher 
transferability (i.e. performing better during external evaluation).

Comparing individual approaches, both local approaches con-
sidering regional variation in habitat selection (local spatial and 
local environment) performed best at internal evaluation, slightly 
improving performance over the local stationary approach (mean 
internal performances of 0.748, 0.752 and 0.738 respectively; 
only machine-learning models: 0.804, 0.801 and 0.786). Among 
global approaches, the nonstationary approaches (global spatial 
and global environment), did not lead to clear internal performance 
improvements over the global stationary approach, although for 
machine-learning models, slight performance increases were 
discernible (internal performance of 0.782, 0.781 and 0.772). 
Focusing on model transferability (external evaluation), the local 
spatial approach implemented by weighting models based on spa-
tial proximity performed considerably worse than all other ap-
proaches (average difference −0.064 vs. other approaches), while 
other approaches performed similarly. Considering only the bet-
ter-performing machine-learning algorithms, the most transfer-
able approaches were those describing variation in selection as a 
function of environmental variability (global environment and local 
environment), although improvements over stationary approaches 
were small (0.764 and 0.761 global environment vs. global station-
ary, 0.770 and 0.766 local environment vs. local stationary). Overall, 
the local environment approach thus achieved the highest average 
predictive performance across both levels of selection and both 
evaluation types.

3.2  |  Comparison of habitat suitability maps

Given considerably lower model performance, we excluded GAMMs 
from our algorithm ensemble used to create habitat suitability maps 
and averaged predictions only across Maxent and random forest 
models. We created suitability maps using the global environment 

TA B L E  1  Overview of the six modelling approaches.

Modelling approach Training data Implementation of regionally varying responses

Global stationary Single model pooling all tracking datasets None

Global spatial Single model pooling all tracking datasets Addition of latitude and longitude as model predictors (random forest, 
Maxent) or spatially varying effects (GAMMs)

Global environment Single model pooling all tracking datasets Addition of predictors characterizing regional-scale habitat availability 
(random forest, Maxent) or interaction effects with these predictors 
(GAMMs)

Local stationary Separate models for each study site None (simple average of all site-specific models)

Local spatial Separate models for each study site Site-specific models weighted by distance to training sites (inverse distance 
weighting)

Local environment Separate models for each study site Site-specific models weighted by environmental dissimilarity to training 
sites. Environmental dissimilarity is calculated as weighted (by variable 
importance) or unweighted Euclidean or Mahalanobis distance in predictor 
variable space.
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8  |    OESER et al.

and local environment approaches, which showed the best model 
transferability (see Section 3.1). Suitability maps of these best-per-
forming global and local approaches showed highly similar spatial 
patterns (Spearman rank correlation = 0.93; Figure 4). The integra-
tion of habitat models fitted at different levels of habitat selection 
(i.e. landscape level and home range level) allowed to filter out habi-
tat patches too small for the establishment of lynx home ranges (see 
Appendix S8). Threshold selection for binarizing suitability maps had 
a large impact on the total habitat area identified, with 48% and 43% 
more habitat areas mapped in the global and local approach, respec-
tively, when comparing maps using the low versus high threshold. 
Overall, the global environment approach identified more suitable 
lynx habitat (13%–19% more across thresholds; see Appendix S9). 
Yet, most identified habitat areas overlapped between approaches 
(78%–80% overlap across thresholds).

3.3  |  Identification of unoccupied habitat areas

Both model approaches predicted large areas of currently unoc-
cupied lynx habitat across our study area. In countries fully cov-
ered by the most recent continental-scale assessment of lynx 
occurrence in Europe (excluding Russia, Ukraine, Moldova and 
Belarus; Kaczensky et al., 2021), binary habitat patch maps predict 

677,000–1,420,000 km2 of suitable lynx habitat, depending on 
the modelling approach and threshold used, which corresponds to 
56%–117% of currently occupied areas in this region. Comparing 
suitability values with areas of extant lynx populations at the level 
of 10 km2 grid cells, we identified a large number of grid cells with 
equal or larger suitability than the average suitability of grid cells 
with confirmed, permanent lynx occurrence (N = 1541, correspond-
ing to 4.0% of unoccupied grid cells and 16.4% of occupied grid 
cells; Figure 5a). Unoccupied grid cells with the highest suitability 
were widely distributed across the continent and mainly located in 
mountainous and continuously forested regions. Importantly, large 
parts of the most suitable unoccupied habitats were located in re-
gions lying between extant populations, such as large parts of the 
Southern and Eastern Alps, the Black Forest and Thuringian Forest 
in Germany, as well as large areas on the Balkan peninsula, including 
the Balkan Mountains, the Rhodope Mountains, as well as parts of 
the Dinaric Mountains (Figure 5b).

4  |  DISCUSSION

As animal tracking is entering the big data era (Kays et al., 2015), 
the growing availability of tracking data provides new opportunities 
to assess habitat consistently, at high resolution, and across large 

F I G U R E  3  Model performance of different habitat modelling approaches, summarized across two levels of habitat selection (landscape 
and home range level). We tested six modelling approaches (rows), comparing internal evaluation (prediction to known sites) against external 
evaluation (prediction to unknown sites). Model performance was calculated by combining two performance metrics (AUC and CBI) into a 
relative performance score. Black triangles indicate mean performance values.
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    |  9OESER et al.

geographical extents. A key challenge in this context is how to best 
integrate tracking datasets across study sites and environmental 
gradients, while appropriately accounting for regional variation in 
habitat selection (Paton & Matthiopoulos, 2016). Here, we system-
atically assessed different approaches for addressing this challenge 
and used them to map habitat for a recovering large carnivore at 
fine resolution at a continental scale. Our analyses yielded three key 
insights, which we discuss further in the below. First, global and local 
approaches achieved similar predictive performance and resulted in 
similar suitability maps, indicating that both model building strate-
gies can yield robust and transferable habitat maps across large 
areas. Second, our analyses underscore the importance of consider-
ing regionally varying habitat selection in large-area habitat mapping, 
as approaches describing variation in lynx’ responses as a function of 
environmental variation across study sites performed best in our as-
sessment. Third, we here provide the first consistent, fine-resolution 
habitat assessment for the Eurasian lynx across Europe, highlighting 
large areas of suitable, currently unoccupied habitat and therefore 
considerable potential for continued range expansion.

Global and local model building strategies have been ap-
plied for large-area habitat mapping (Bluhm et al., 2023; Scharf & 
Fernández, 2018), yet comparisons of their effectiveness are scarce 
(Olson et al., 2021; Reisinger et al., 2021). On average, global and 
local models performed better at extrapolation and intrapolation 
(i.e. model transfer vs. prediction at observed sites), respectively, 
in line with the trade-off between generality and specificity associ-
ated with pooling and splitting datasets for model training (Bamford 
et al., 2009; Paton & Matthiopoulos, 2016). Yet, differences between 
the two model building strategies were overall small and other fac-
tors had more substantial effects on model performance and habitat 
maps. Specifically, three factors were particularly important. First, 

the choice of modelling algorithm was key, as Maxent and random 
forest consistently outperformed GAMMs. The good performance 
of Maxent and random forests for habitat modelling, including 
models using animal tracking data, is in line with previous research 
(Aldossari et al., 2022; Shoemaker et al., 2018; Valavi, Guillera-
Arroita, et al., 2021). Second, the predictive performance of Maxent 
and random forest models varied greatly over different parameter 
settings. This underscores the need for carefully tuning parameters 
instead of relying on default settings, which should be particularly 
important when relying on large and heterogeneous datasets as in 
our case (Radosavljevic & Anderson, 2014). Finally, while habitat 
maps were highly similar between the two best-performing global 
and local approaches, the selection of thresholds introduced con-
siderable uncertainty, with mapped habitat areas varying around 
45% across thresholds. Although binary habitat maps are sometimes 
needed for conservation planning, the large uncertainty-associ-
ated threshold selection remains an unsolved challenge for habitat 
maps based on presence-only datasets (Muscatello et al., 2021; 
Norris, 2014). We thus recommend using continuous habitat suit-
ability maps whenever possible or relate predicted habitat suitability 
in currently unoccupied regions to areas with known occurrences, as 
we did for identifying the most suitable unoccupied habitat areas. 
In sum, we highlight that both global and local modelling strategies 
can be suitable for combining animal tracking datasets at a conti-
nental scale, while other commonly discussed issues of modelling 
techniques (i.e. modelling algorithms, parameter tuning and thresh-
old selection), seem to have a larger effect on modelling results.

We achieved the highest predictive performance with ap-
proaches that consider regional variation in lynx habitat selection. 
Approaches describing varying habitat selection as a function of 
environmental variation yielded the most transferable models, 

F I G U R E  4  Habitat suitability maps of the best-performing global (left) and local (right) modelling approaches.
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10  |    OESER et al.

while weighting local models based on their spatial proximity per-
formed much worse when transferred to unobserved study sites. 
Variation in environmental conditions more closely reflects the 
ecological mechanisms causing animals to adjust their habitat se-
lection (i.e. adjustments of habitat use with varying habitat avail-
ability also termed functional responses; Aarts et al., 2013), whereas 
spatial proximity alone is often a poor proxy of model transferabil-
ity (Yates et al., 2018). Our results thus indicate that functional 
responses might be a main factor explaining variation in habitat 
selection by lynx across Europe, which is well in line with recent 
results highlighting adjustments by lynx across gradients of human 
pressure and landscape composition (Oeser et al., 2023). While 
previous studies have highlighted the usefulness of including 
predictor variables at multiple scales for capturing functional re-
sponses (Aldossari et al., 2022; Matthiopoulos et al., 2011; Paton 
& Matthiopoulos, 2016), as in our global environment approach, our 
comparison showed that combining habitat maps from local models 
can also achieve good performance. Indeed, our local environment 
approach overall performed best among all approaches we tested. 
Thus, our results highlighted that strategies based on the combi-
nation of site-specific local models, although used less frequently, 
can outperform global approaches and thus deserve more research 
attention in the context of large-area habitat mapping (Reisinger 
et al., 2021). More generally, our results confirm the importance of 
considering regional variation in habitat selection when integrating 

animal tracking datasets across large areas and environmental gra-
dients. A growing body of research suggests that functional re-
sponses in habitat selection are practically ubiquitous among large 
mammals (Godvik et al., 2009; Herfindal et al., 2009; Holbrook 
et al., 2019). Therefore, accounting for regionally varying habitat 
selection in large-area habitat assessments is likely important in the 
case of many other species as well.

Our analyses provide the most comprehensive and detailed as-
sessment of European lynx habitat so far, highlighting large areas 
of suitable, but currently unoccupied habitat. For example, at the 
level of 10-km2 grid cells, we mapped areas corresponding to 16% 
of the current lynx distribution that feature suitability values equal 
or larger than the average of currently occupied areas. Importantly, 
many of the most suitable unoccupied areas are located in regions 
lying between extant populations. Key regions identified by our as-
sessment, some of which already feature sporadic lynx occurrence, 
include parts of the Eastern and Southern Alps, the Black Forest and 
Thuringian Forest in Germany, as well as the Balkan Mountains, the 
Rhodopes and parts of the Dinaric Mountains. The lack of functional 
connectivity between extant populations constitutes one of the 
central challenges for lynx conservation and management in Central 
and Southern Europe (Bonn Lynx Expert Group, 2021). Fostering 
connectivity for lynx in these regions, for example through the es-
tablishment of functional transboundary migration corridors or the 
creation of stepping-stone populations through reintroductions 

F I G U R E  5  Suitability of unoccupied habitat areas at the level of 10 × 10 km grid cells across countries fully covered by the most recent 
continental-scale assessment of lynx distribution (Kaczensky et al., 2021). (a) Suitability relative to the median suitability of grid cells with 
permanent lynx occurrence. (b) Unoccupied grid cells featuring the highest 5% of summed suitability values (shown in red). Grey areas 
correspond to grid cells with permanent lynx occurrence.

 14724642, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13784 by Instytut O

chrony Przyrodyon, W
iley O

nline L
ibrary on [18/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  11OESER et al.

could make them key building blocks in the creation of lynx meta-
populations at the continental scale. Yet, despite the availability of 
suitable habitat, the success of recolonization through natural dis-
persal has been limited, highlighting the importance of considering 
other limiting factors for range expansions, such as barriers to dis-
persal, traffic mortality and poaching (Arlettaz et al., 2021; Heurich 
et al., 2018; Port et al., 2021). In addition, we caution that several 
factors might disqualify areas identified as environmentally suitable 
by our maps as good candidate sites for fostering lynx comebacks, 
such as potential overlap with recovery areas of the critically endan-
gered sister species Iberian lynx (Lynx pardinus; Garrote et al., 2020). 
Finally, evaluating the human acceptance of lynx in regions con-
taining patches of suitable habitat is important (Behr et al., 2017; 
Drouilly & O'Riain, 2021). Bearing these constraints in mind, our 
habitat suitability maps can provide an important basis for informing 
lynx conservation and management at a continental level.

While we used a very large tracking dataset and tested a range 
of state-of-the art modelling approaches, some limitations must be 
kept in mind. First, other factors we did not explicitly incorporate in 
our models are important causes of regional variation in habitat se-
lection. For example, differences in population density, interactions 
with other species or genetic variation have all been linked to varia-
tion in habitat selection (Avgar et al., 2020; Fletcher, 2007). How to 
account for such sources of variation in habitat models is an active 
field of research but might be integrated with approaches captur-
ing environmentally related variation (Smith et al., 2019; Tikhonov 
et al., 2017). In addition, we could not include information on prey 
availability in our models due to a lack of continuous spatial data. 
However, given the wide distribution and generally high levels of 
abundance of most prey species of lynx across Europe (e.g. roe deer 
Capreolus capreolus; Carpio et al., 2021; Linnell et al., 2020), prey 
availability rarely should be a limiting factor for lynx recovery in 
Europe. As our tracking datasets mainly cover relatively remote and 
undisturbed habitats and do not include parts of the species' range 
in which lynx are known to differ in their prey preference and habitat 
selection (e.g. specialization on lagomorphs and stronger use of open 
habitats in Anatolia; Mengüllüoğlu et al., 2018), our habitat models 
might underestimate suitable habitat areas in some regions.

As a more general limitation, we did not explicitly address several 
challenges relating to the representativity of heterogeneously col-
lected tracking datasets for assessing population- or species-level 
habitat selection. As site-level tracking datasets are collected with 
different preconditions and goals, they often differ in several pa-
rameters potentially affecting inferences on habitat use, such as the 
number of collared individuals, sex and age ratios, tracking intervals 
and location errors. We here chose to maximize the number of indi-
viduals in our dataset by including all individuals with more than 50 
available tracking observations. Yet, we acknowledge that our hab-
itat models, particularly local models built on site-level data, could 
be biased by factors not accounted for in our analysis, such as un-
even sex ratios, differences in location errors and tracking intervals 
between GPS and VHF data, or low numbers of individuals coupled 

with strong individual-level variation in habitat selection. More 
generally, when using continental-scale suitability maps such as 
ours, it is important to consider that environmental predictor vari-
ables derived over large areas might miss relevant local differences 
in habitat conditions (e.g. traffic volume on roads or recreational 
activity levels inside forested areas). Therefore, decision-making for 
conservation planning might require follow-up analyses based on 
datasets better capturing local habitat conditions. Finally, while we 
here were able to rely on a large dataset comprising many individ-
uals from almost all extant lynx populations in Europe and focused 
on comparing modelling approaches that can be applied once such 
continental-scale databases are available, further research inves-
tigating how many (and which) individuals and study sites are re-
quired to ensure representatively characterizing habitat selection 
is important to better understand under what conditions tracking 
data allows robust inferences in large-area habitat mapping (Street 
et al., 2021).

Despite these limitations, our study highlights the considerable 
potential of integrating animal tracking data across large areas for 
habitat assessments. Robust habitat maps are crucial for informing 
the transboundary conservation of wide-ranging species, such as 
large carnivores, yet consistent large-area habitat maps providing 
levels of spatial detail required for guiding conservation and man-
agement decisions are typically lacking. Our results highlight that 
the integration of animal tracking datasets across animal popula-
tions through curated and openly accessible databases can provide 
for a step change in our ability to map wildlife habitat consistently, 
robustly, at high resolution, and across large geographical extents 
(Heurich et al., 2021; Urbano et al., 2021). Importantly, as we showed 
here, large-area mapping does not have to come at the cost of losing 
regional context, when local variations in habitat selection across 
gradients of human modification, climate or landscape composition 
are properly taken into account. A new generation of habitat models 
harnessing the enormous potential of the emerging big data in an-
imal tracking will increasingly allow us to overcome the traditional 
trade-offs between local, fine-scale habitat assessments and broad-
scale, biogeographical analyses.
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